Suppr超能文献

一种基于多尺度特征和注意力机制的用于交通标志识别的轻量级网络。

A lightweight network for traffic sign recognition based on multi-scale feature and attention mechanism.

作者信息

Wei Wei, Zhang Lili, Yang Kang, Li Jing, Cui Ning, Han Yucheng, Zhang Ning, Yang Xudong, Tan Hongxin, Wang Kai

机构信息

Beijing Institute of Petrochemical Technology, Beijing, 102617, China.

Science and Technology on Complex Aviation Systems Simulation Laboratory, Beijing, 100076, China.

出版信息

Heliyon. 2024 Feb 15;10(4):e26182. doi: 10.1016/j.heliyon.2024.e26182. eCollection 2024 Feb 29.

Abstract

Traffic sign recognition is an important part of intelligent transportation system. It uses computer vision and traffic sign recognition technology to detect and recognize traffic signs on the road automatically. In this paper, we propose a lightweight model for traffic sign recognition based on convolutional neural networks called ConvNeSe. Firstly, the feature extraction module of the model is constructed using the Depthwise Separable Convolution and Inverted Residuals structures. The model extracts multi-scale features with strong representation ability by optimizing the structure of convolutional neural networks and fusing of features. Then, the model introduces Squeeze and Excitation Block (SE Block) to improve the attention to important features, which can capture key information of traffic sign images. Finally, the accuracy of the model in the German Traffic Sign Recognition Benchmark Database (GTSRB) is 99.85%. At the same time, the model has good robustness according to the results of ablation experiments.

摘要

交通标志识别是智能交通系统的重要组成部分。它利用计算机视觉和交通标志识别技术自动检测和识别道路上的交通标志。在本文中,我们提出了一种基于卷积神经网络的轻量级交通标志识别模型,称为ConvNeSe。首先,使用深度可分离卷积和倒置残差结构构建模型的特征提取模块。该模型通过优化卷积神经网络的结构和特征融合来提取具有强大表示能力的多尺度特征。然后,模型引入挤压与激励模块(SE模块)以提高对重要特征的关注度,从而能够捕捉交通标志图像的关键信息。最后,该模型在德国交通标志识别基准数据库(GTSRB)中的准确率为99.85%。同时,根据消融实验的结果,该模型具有良好的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验