Tomasini Michele, Caporaso Lucia, Szostak Michal, Poater Albert
Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
Dipartimento di Chimica e Biologia, Università di Salerno Via Ponte don Melillo 84084 Fisciano Italy.
RSC Adv. 2025 Mar 24;15(11):8207-8212. doi: 10.1039/d5ra00229j. eCollection 2025 Mar 17.
,-Boc amides have emerged as the most common class of acyclic twisted amides that have been engaged in a range of C-N activation and cross-coupling processes of ubiquitous amide bonds. These amides are readily synthesized from primary amides through a site-selective -butoxycarbonylation. Due to the steric bulk of di--butoxy groups, these amides exhibit significant C[double bond, length as m-dash]N bond twisting, which promotes N-C bond cleavage, facilitating their use in cross-coupling reactions. Herein, we present a computational blueprint for the C[double bond, length as m-dash]N bond rotation in ,-Boc amides, revealing that the rotational barrier and twist angle () are influenced by the nature of the substituents at the sp carbon position. Sterically hindered substituents exhibit the highest distortions, leading to lower rotation barriers. Rotation along the C[double bond, length as m-dash]N bond is accompanied by phenyl ring rotation to minimize steric clashes. A strong correlation between the rotational barriers and the HOMO energies is observed. These findings provide key insights into the fundamental role of amide bond distortion in C-N activation processes.
α-叔丁氧羰基(α-Boc)酰胺已成为最常见的一类无环扭曲酰胺,它们参与了一系列普遍存在的酰胺键的碳-氮活化和交叉偶联过程。这些酰胺可通过位点选择性的α-丁氧基羰基化反应由伯酰胺轻松合成。由于二叔丁氧基基团的空间位阻,这些酰胺表现出显著的碳-氮双键扭曲,这促进了氮-碳键的断裂,有利于它们在交叉偶联反应中的应用。在此,我们展示了α-Boc酰胺中碳-氮双键旋转的计算蓝图,揭示了旋转势垒和扭转角(θ)受sp碳位置取代基性质的影响。空间位阻较大的取代基表现出最大的扭曲,导致较低的旋转势垒。沿着碳-氮双键的旋转伴随着苯环的旋转,以最小化空间冲突。观察到旋转势垒与最高占据分子轨道(HOMO)能量之间存在强相关性。这些发现为酰胺键扭曲在碳-氮活化过程中的基本作用提供了关键见解。