Suppr超能文献

对使用真实世界数据和分析平台TriNetX的方法及其应用的全面综述。

A comprehensive review of methodologies and application to use the real-world data and analytics platform TriNetX.

作者信息

Ludwig Ralf J, Anson Matthew, Zirpel Henner, Thaci Diamant, Olbrich Henning, Bieber Katja, Kridin Khalaf, Dempfle Astrid, Curman Philip, Zhao Sizheng S, Alam Uazman

机构信息

Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.

Department of Dermatology, University Hospital Schleswig-Holstein Lübeck, Lübeck, Germany.

出版信息

Front Pharmacol. 2025 Mar 10;16:1516126. doi: 10.3389/fphar.2025.1516126. eCollection 2025.

Abstract

Randomized controlled trials (RCTs) are the gold standard for evaluating the efficacy and safety of both pharmacological and non-pharmacological interventions. However, while they are designed to control confounders and ensure internal validity, their usually stringent inclusion and exclusion criteria often limit the generalizability of findings to broader patient populations. Moreover, RCTs are resource-intensive, frequently underpowered to detect rare adverse events, and sometimes narrowly focused due to their highly controlled environments. In contrast, real-world data (RWD), typically derived from electronic health records (EHRs) and claims databases, offers a valuable counterpart for answering research questions that may be impractical to address through RCTs. Recognizing this, the US Food and Drug Administration (FDA) has increasingly relied on real-world evidence (RWE) from RWD to support regulatory decisions and post-market surveillance. Platforms like TriNetX, that leverage large-scale RWD, facilitate collaborations between academia, industry, and healthcare organizations, and constitute an in-depth tool for retrieval and analysis of RWD. TriNetX's federated network architecture allows real-time, privacy-compliant data access, significantly enhancing the ability to conduct retrospective studies and refine clinical trial designs. With access to currently over 150 million EHRs, TriNetX has proven particularly effective in filling gaps left by RCTs, especially in the context of rare diseases, rare endpoints, and diverse patient populations. As the role of RWD in healthcare continues to expand, TriNetX stands out as a critical tool that complements traditional clinical trials, bridging the gap between controlled research environments and real-world practice. This review provides a comprehensive analysis of the methodologies and applications of the TriNetX platform, highlighting its potential contribution to advance patient care and outcomes.

摘要

随机对照试验(RCTs)是评估药物和非药物干预措施有效性和安全性的金标准。然而,尽管它们旨在控制混杂因素并确保内部有效性,但其通常严格的纳入和排除标准往往限制了研究结果对更广泛患者群体的可推广性。此外,随机对照试验资源密集,通常缺乏检测罕见不良事件的能力,并且有时由于其高度受控的环境而关注点狭窄。相比之下,真实世界数据(RWD)通常来自电子健康记录(EHRs)和理赔数据库,为回答通过随机对照试验可能难以解决的研究问题提供了有价值的补充。认识到这一点,美国食品药品监督管理局(FDA)越来越依赖来自真实世界数据的真实世界证据(RWE)来支持监管决策和上市后监测。像TriNetX这样利用大规模真实世界数据的平台,促进了学术界、行业和医疗保健组织之间的合作,并构成了一个用于检索和分析真实世界数据的深入工具。TriNetX的联邦网络架构允许实时、符合隐私的数据访问,显著增强了进行回顾性研究和完善临床试验设计的能力。凭借目前可访问超过1.5亿份电子健康记录,TriNetX已被证明在填补随机对照试验留下的空白方面特别有效,尤其是在罕见疾病、罕见终点和多样化患者群体的背景下。随着真实世界数据在医疗保健中的作用不断扩大,TriNetX作为一种关键工具脱颖而出,它补充了传统临床试验,弥合了受控研究环境与现实世界实践之间的差距。本综述对TriNetX平台的方法和应用进行了全面分析,突出了其对改善患者护理和治疗结果的潜在贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/11931024/42ab866936c5/fphar-16-1516126-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验