Suppr超能文献

支持栓塞线圈上市后安全性和性能的真实世界数据:医疗器械制造商和数据研究所合作产生的证据。

Real-world data to support post-market safety and performance of embolization coils: evidence generation from a medical device manufacturer and data institute partnership.

机构信息

Cook Research Incorporated, 1 Geddes Way, West Lafayette, IN, 47906, USA.

, 3Aware, Indianapolis, IN, USA.

出版信息

BMC Med Inform Decis Mak. 2024 Sep 19;24(1):263. doi: 10.1186/s12911-024-02659-0.

Abstract

BACKGROUND

Recognizing the limitations of pre-market clinical data, regulatory authorities have embraced total product lifecycle management with post-market surveillance (PMS) data to assess medical device safety and performance. One method of proactive PMS involves the analysis of real-world data (RWD) through retrospective review of electronic health records (EHR). Because EHRs are patient-centered and focused on providing tools that clinicians use to determine care rather than collecting information on individual medical products, the process of transforming RWD into real-world evidence (RWE) can be laborious, particularly for medical devices with broad clinical use and extended clinical follow-up. This study describes a method to extract RWD from EHR to generate RWE on the safety and performance of embolization coils.

METHODS

Through a partnership between a non-profit data institute and a medical device manufacturer, information on implantable embolization coils' use was extracted, linked, and analyzed from clinical data housed in an electronic data warehouse from the state of Indiana's largest health system. To evaluate the performance and safety of the embolization coils, technical success and safety were defined as per the Society of Interventional Radiology guidelines. A multi-prong strategy including electronic and manual review of unstructured (clinical chart notes) and structured data (International Classification of Disease codes), was developed to identify patients with relevant devices and extract data related to the endpoints.

RESULTS

A total of 323 patients were identified as treated using Cook Medical Tornado, Nester, or MReye embolization coils between 1 January 2014 and 31 December 2018. Available clinical follow-up for these patients was 1127 ± 719 days. Indications for use, adverse events, and procedural success rates were identified via automated extraction of structured data along with review of available unstructured data. The overall technical success rate was 96.7%, and the safety events rate was 5.3% with 18 major adverse events in 17 patients. The calculated technical success and safety rates met pre-established performance goals (≥ 85% for technical success and ≤ 12% for safety), highlighting the relevance of this surveillance method.

CONCLUSIONS

Generating RWE from RWD requires careful planning and execution. The process described herein provided valuable longitudinal data for PMS of real-world device safety and performance. This cost-effective approach can be translated to other medical devices and similar RWD database systems.

摘要

背景

认识到上市前临床数据的局限性,监管机构通过上市后监测(PMS)数据采用全面产品生命周期管理来评估医疗器械的安全性和性能。主动 PMS 的一种方法是通过对电子健康记录(EHR)进行回顾性分析来分析真实世界数据(RWD)。由于 EHR 以患者为中心,专注于提供临床医生用于确定护理的工具,而不是收集有关单个医疗器械的信息,因此将 RWD 转化为真实世界证据(RWE)的过程可能很繁琐,特别是对于具有广泛临床应用和延长临床随访的医疗器械。本研究描述了一种从 EHR 中提取 RWD 以生成关于栓塞线圈安全性和性能的 RWE 的方法。

方法

通过非营利数据研究所和医疗器械制造商之间的合作,从印第安纳州最大的医疗系统的电子数据仓库中提取、链接和分析有关可植入栓塞线圈使用情况的信息。为了评估栓塞线圈的性能和安全性,根据介入放射学协会的指南定义了技术成功率和安全性。制定了一种多管齐下的策略,包括对非结构化(临床图表注释)和结构化数据(国际疾病分类代码)进行电子和手动审查,以确定具有相关设备的患者并提取与终点相关的数据。

结果

在 2014 年 1 月 1 日至 2018 年 12 月 31 日期间,共有 323 名患者被确定使用 Cook Medical Tornado、Nester 或 MReye 栓塞线圈进行治疗。这些患者的临床随访时间为 1127±719 天。通过自动提取结构化数据以及审查可用的非结构化数据,确定了使用情况、不良事件和程序成功率。总体技术成功率为 96.7%,安全性事件发生率为 5.3%,17 名患者中有 18 名发生 18 例重大不良事件。计算出的技术成功率和安全性率符合预先设定的性能目标(技术成功率≥85%,安全性≤12%),突出了这种监测方法的相关性。

结论

从 RWD 生成 RWE 需要精心策划和执行。本文所述的过程为医疗器械真实世界安全性和性能的 PMS 提供了有价值的纵向数据。这种具有成本效益的方法可以转化为其他医疗器械和类似的 RWD 数据库系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e965/11414114/ca1af9c4b998/12911_2024_2659_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验