Bai Yong, Gao Jing, Yan Yuwen, Zhao Xu
Intensive Care Unit, Hubei University of Medicine, Renmin Hospital, Shiyan, Hubei, China.
Department of Gastroenterology 3, Hubei University of Medicine, Renmin Hospital, Shiyan, Hubei, China.
Front Immunol. 2024 Dec 12;15:1450014. doi: 10.3389/fimmu.2024.1450014. eCollection 2024.
Sepsis is a life-threatening organ dysfunction condition produced by dysregulation of the host response to infection. It is now characterized by a high clinical morbidity and mortality rate, endangering patients' lives and health. The purpose of this study was to determine the value of Long chain non-coding RNA (LncRNA) RP3_508I15.21, RP11_295G20.2, and LDLRAD4_AS1 in the diagnosis of adult sepsis patients and to develop a Nomogram prediction model.
We screened adult sepsis microarray datasets GSE57065 and GSE95233 from the GEO database and performed differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), and machine learning methods to find the genes by random forest (Random Forest), least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM), respectively, with GSE95233 as the training set and GSE57065 as the validation set. Differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), boxplot statistical analysis, and ROC analysis by Random Forest, Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine (SVM) machine learning methods were used to identify characteristic genes and build the Nomogram Prediction model.
GSE95233 yielded a total of 1069 genes, 102 of which were sepsis-related and 22 of which were non-sepsis controls. GSE57065 yielded a total of 899 genes, with 467 up-regulated and 432 down-regulated, including 82 sepsis-related genes and 25 non-sepsis control genes. WGCNA analysis excluded outlier samples, leaving 2,029 genes for relationship analysis between sepsis- and non-sepsis patient-associated LncRNA network representation modules, as well as Wein plots of differential genes versus genes in key modules of weighted co-expression network analysis to analyze gene intersections. Machine Learning found the sepsis-related characteristic LncRNAs RP3-508I15.21, RP11-295G20.2, LDLRAD4-AS1, and CTD-2542L18.1. The datasets GSE95233 and GSE57065 were analyzed using Boxplot against the screened genes listed above, respectively. The p-value between the sepsis and non-sepsis groups was less than 0.05, indicating that anomalies were statistically significant. CTD-2542L18.1 in dataset GSE57065 had an AUC value of 0.638, which was less than 0.7 and did not indicate diagnostic significance, but RP3-508I15.21, RP11-295G20.2, and LDLRAD4-AS1 had AUC values more than 0.7 after ROC analysis. All four sepsis-associated LncRNA ROC analyses in dataset GSE95233 exhibited AUC values more than 0.7, indicating diagnostic significance.
LncRNAs RP3_508I15.21, RP11_295G20.2, and LDLRAD4_AS1 have some utility in the diagnosis and treatment of adult sepsis patients, as well as some reference importance in guiding the diagnosis and treatment of clinical sepsis.
脓毒症是一种因宿主对感染的反应失调而导致的危及生命的器官功能障碍疾病。目前其临床发病率和死亡率较高,危及患者生命健康。本研究旨在确定长链非编码RNA(LncRNA)RP3_508I15.21、RP11_295G20.2和LDLRAD4_AS1在成人脓毒症患者诊断中的价值,并建立列线图预测模型。
我们从GEO数据库中筛选出成人脓毒症微阵列数据集GSE57065和GSE95233,并分别以GSE95233为训练集、GSE57065为验证集,通过执行差异表达基因(DEG)、加权基因共表达网络分析(WGCNA)以及机器学习方法(随机森林(Random Forest)、最小绝对收缩和选择算子(LASSO)以及支持向量机(SVM))来寻找相关基因。运用差异表达基因(DEG)、加权基因共表达网络分析(WGCNA)、箱线图统计分析以及随机森林、最小绝对收缩和选择算子(LASSO)、支持向量机(SVM)机器学习方法进行ROC分析,以鉴定特征基因并构建列线图预测模型。
GSE95233共产生1069个基因,其中102个与脓毒症相关,22个为非脓毒症对照。GSE57065共产生899个基因,其中467个上调,432个下调,包括82个与脓毒症相关的基因和25个非脓毒症对照基因。WGCNA分析排除了异常样本,留下2029个基因用于脓毒症和非脓毒症患者相关LncRNA网络表征模块之间的关系分析,以及加权共表达网络分析关键模块中差异基因与基因的韦恩图分析以分析基因交集。机器学习发现了与脓毒症相关的特征性LncRNAs RP3 - 508I15.21、RP11 - 295G20.2、LDLRAD4 - AS1和CTD - 2542L18.1。分别使用箱线图对数据集GSE95233和GSE57065针对上述筛选出的基因进行分析。脓毒症组和非脓毒症组之间的p值小于0.05,表明差异具有统计学意义。数据集GSE57065中的CTD - 2542L18.1的AUC值为0.638,小于0.7,不具有诊断意义,但RP3 - 508I15.21、RP11 - 295G20.2和LDLRAD4 - AS1在ROC分析后AUC值大于0.7。数据集GSE95233中所有四个与脓毒症相关的LncRNA的ROC分析AUC值均大于0.7,具有诊断意义。
LncRNAs RP3_508I15.21、RP11_295G20.2和LDLRAD4_AS1在成人脓毒症患者的诊断和治疗中具有一定作用,对指导临床脓毒症的诊治也具有一定参考价值。