Suppr超能文献

单壁碳纳米管内弱受限卡宾的低温合成

Low-Temperature Synthesis of Weakly Confined Carbyne Inside Single-Walled Carbon Nanotubes.

作者信息

Zhang Bo-Wen, Qiu Xi-Yang, Ma Yicheng, Hu Qingmei, Fitó-Parera Aina, Kohata Ikuma, Feng Ya, Zheng Yongjia, Zhang Chiyu, Matsuo Yutaka, Wang YuHuang, Chiashi Shohei, Otsuka Keigo, Xiang Rong, Levshov Dmitry I, Cambré Sofie, Wenseleers Wim, Rotkin Slava V, Maruyama Shigeo

机构信息

Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.

State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

ACS Nano. 2025 Apr 8;19(13):12996-13006. doi: 10.1021/acsnano.4c17104. Epub 2025 Mar 25.

Abstract

Carbyne, a one-dimensional (1D) carbon allotrope with alternating triple and single bonds, has the highest known mechanical strength but is unstable to bending, limiting its synthesis to short linear chains. Encapsulation within carbon nanotubes (CNTs) stabilizes carbyne, forming confined carbyne (CC), thus enabling further research concerning attractive 1D physics and materials properties of carbyne. While CC has been synthesized in multi-walled CNTs using the arc-discharge method and in double-walled CNTs via the high-temperature high-vacuum method, synthesis in single-walled CNTs (SWCNTs) has been challenging due to their fragility under such conditions. In this work, we report a low-temperature method to synthesize CC inside SWCNTs (CC@SWCNT). By annealing SWCNTs containing ammonium deoxycholate (ADC) at 400 °C, ADC is converted into CC without damaging the SWCNTs. Raman spectroscopy revealed a strong CC phonon peak (CC-mode) at 1860-1870 cm, much stronger than the SWCNT G-band peak, confirming a high fraction of CC in the resulting material. The Raman mapping result showed the uniformity of the CC-mode signal across the entire film sample, proving the high efficiency of this method in synthesizing CC in every SWCNT of the appropriate size. Notably, the CC-mode peaks of CC@SWCNT (above 1860 cm) are higher than those reported in previous CC@CNT samples (mostly <1856 cm). This is attributed to larger SWCNT diameters (>0.95 nm) used in this study, compared to the typical 0.6-0.8 nm range. Larger diameters result in reduced confinement, allowing carbyne to closely resemble free-standing carbyne while remaining stabilized. This low-temperature synthesis of long-chain, nearly free-standing carbyne within large-diameter SWCNTs offers opportunities for exploring 1D physics and properties of carbyne for potential applications.

摘要

卡宾是一种具有交替三键和单键的一维(1D)碳同素异形体,具有已知的最高机械强度,但对弯曲不稳定,这限制了其合成只能得到短线性链。将其封装在碳纳米管(CNT)中可使卡宾稳定,形成受限卡宾(CC),从而能够进一步研究卡宾引人关注的一维物理和材料特性。虽然已通过电弧放电法在多壁碳纳米管中合成了CC,并通过高温高真空法在双壁碳纳米管中合成了CC,但在单壁碳纳米管(SWCNT)中进行合成一直具有挑战性,因为它们在这种条件下很脆弱。在这项工作中,我们报告了一种在SWCNT内部合成CC(CC@SWCNT)的低温方法。通过在400℃下对含有脱氧胆酸铵(ADC)的SWCNT进行退火处理,ADC被转化为CC,而不会损坏SWCNT。拉曼光谱显示在1860 - 1870 cm处有一个很强的CC声子峰(CC模式),比SWCNT的G带峰要强得多,这证实了所得材料中CC的比例很高。拉曼映射结果表明CC模式信号在整个薄膜样品上具有均匀性,证明了该方法在合适尺寸的每个SWCNT中合成CC的高效性。值得注意的是,CC@SWCNT的CC模式峰(高于1860 cm)高于先前报道的CC@CNT样品中的峰(大多<1856 cm)。这归因于本研究中使用的SWCNT直径较大(>0.95 nm),而典型范围是0.6 - 0.8 nm。较大的直径导致限制减少,使得卡宾在保持稳定的同时更接近独立的卡宾。在大直径SWCNT内低温合成长链、近乎独立的卡宾为探索卡宾的一维物理和特性以用于潜在应用提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e2f/11984300/dffcd10797bc/nn4c17104_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验