Suppr超能文献

一种将芳烃分子转化为单壁碳纳米管内受限卡宾的通用方法。

A Universal Method to Transform Aromatic Hydrocarbon Molecules into Confined Carbyne inside Single-Walled Carbon Nanotubes.

作者信息

Chen Yingzhi, Tang Kunpeng, Zhang Wendi, Cao Huiju, Zhang Hongwei, Feng Yanghao, Cui Weili, Hu Yuan, Shi Lei, Yang Guowei

机构信息

State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.

School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China.

出版信息

ACS Nano. 2025 Apr 1;19(12):12146-12154. doi: 10.1021/acsnano.4c18912. Epub 2025 Mar 21.

Abstract

Carbyne, a sp-hybridized allotrope of carbon, is a linear carbon chain with exceptional theoretically predicted properties that surpass those of sp-hybridized graphene and carbon nanotubes (CNTs). However, the existence of carbyne has been debated due to its instability caused by Peierls distortion, which limits its practical development. The only successful synthesis of carbyne has been achieved inside CNTs, resulting in a form known as confined carbyne (CC). However, CC can only be synthesized inside multiwalled CNTs, limiting its property-tuning capabilities to the inner tubes of the CNTs. Here, we present a universal method for synthesizing CC inside single-walled CNTs (SWCNTs) with diameters of 0.9-1.3 nm. Aromatic hydrocarbon molecules are filled inside SWCNTs and subsequently transformed into CC under low-temperature annealing. A variety of aromatic hydrocarbon molecules are confirmed as effective precursors for the formation of CC, with Raman frequencies centered around 1861 cm. Enriched (6,5) and (7,6) SWCNTs with diameters less than 0.8 nm are less effective than the SWCNTs with diameters of 0.9-1.3 nm for CC formation. Furthermore, resonance Raman spectroscopy reveals that the optical band gap of the CC at 1861 cm is 2.353 eV, which is consistent with the result obtained using a linear relationship between the Raman frequency and optical band gap. This approach provides a versatile route for synthesizing CC from various precursor molecules inside diverse templates, which is not limited to SWCNTs but could extend to any templates with appropriate size, including molecular sieves, zeolites, boron nitride nanotubes, and metal-organic frameworks.

摘要

卡宾是碳的一种sp杂化同素异形体,是一种线性碳链,具有理论预测的卓越性能,超过了sp杂化的石墨烯和碳纳米管(CNT)。然而,由于佩尔斯畸变导致的不稳定性,卡宾的存在一直存在争议,这限制了其实际发展。卡宾的唯一成功合成是在碳纳米管内部实现的,产生了一种称为受限卡宾(CC)的形式。然而,CC只能在多壁碳纳米管内部合成,将其性能调节能力限制在碳纳米管的内管。在这里,我们提出了一种在直径为0.9-1.3nm的单壁碳纳米管(SWCNT)内部合成CC的通用方法。芳香烃分子填充在SWCNT内部,随后在低温退火下转化为CC。多种芳香烃分子被确认为形成CC的有效前体,拉曼频率集中在1861cm左右。直径小于0.8nm的富集(6,5)和(7,6)SWCNT对于CC形成的效果不如直径为0.9-1.3nm的SWCNT。此外,共振拉曼光谱显示,1861cm处CC的光学带隙为2.353eV,这与使用拉曼频率和光学带隙之间的线性关系获得的结果一致。这种方法提供了一种从各种模板内部的各种前体分子合成CC的通用途径,这不仅限于SWCNT,还可以扩展到任何具有适当尺寸的模板,包括分子筛、沸石、氮化硼纳米管和金属有机框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验