Suppr超能文献

通过亚组分自组装构建的高阶铜基笼状结构

Higher-Order Cu-Based Cages via Subcomponent Self-Assembly.

作者信息

Zhu Huangtianzhi, Speakman Natasha M A, Ronson Tanya K, Nitschke Jonathan R

机构信息

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

出版信息

Acc Chem Res. 2025 Apr 15;58(8):1296-1307. doi: 10.1021/acs.accounts.5c00081. Epub 2025 Mar 25.

Abstract

ConspectusCoordination cages formed via subcomponent self-assembly have found applications in fields including separation, sensing, catalysis, and the stabilization of reactive species, due to their guest binding abilities. Subcomponent self-assembly, which combines dynamic covalent bond (C═N) formation and reversible metal coordination (N→Metal), has enabled the preparation of many intricate polyhedral structures with minimal synthetic effort. This method has been used to prepare multitopic pyridyl-imine ligands that form the edges or faces of polyhedra, with octahedral metal ions, including Fe, Co, and Zn, defining the vertices. The use of Cu in subcomponent self-assembly is less widely reported, as the tetrahedral coordination geometry of Cu requires only two bidentate ligands, which can lead to lower-nuclearity assemblies instead of three-dimensional cages. The coordination flexibility of Cu also adds a challenge to the fabrication of well-defined nanostructures. This Account summarizes a series of higher-order Cu-based coordination cages and the design principles derived from their syntheses. Starting with the development of Cu assemblies and the challenges of preparing Cu cages, we discuss the circumvention of oligomer formation and control of the self-assembly process with Cu through (i) ligand engineering, (ii) vertex design, and (iii) guest-induced structural transformations. Aromatic stacking between corranulene-containing ligands is exploited to produce a 5-fold interlocked [2]catenane, whereas the incorporation of a sterically hindered triptycene subcomponent that minimizes aromatic stacking produces a double-octahedron and a hexagonal prism. These structures illustrate the importance of ligand engineering for obtaining complex Cu structures. We also explored the formation of cages with homo- or heterobimetallic vertices via two distinct strategies. First, dicopper(I) helicates were employed as cage vertices, and second, subcomponents with nonconverging coordination vectors were used. Such bimetallic vertices are challenging to incorporate when octahedral metal templates are used, but the flexibility of Cu renders them accessible. The closed-shell electronic configuration of Cu can endow the cages with photoluminescence, providing circularly polarized luminescence in the presence of helicity-enriched dicopper(I) vertices. The flexible coordination sphere of Cu also facilitates structural transformations upon the addition of suitable guests. One such system is able to self-sort to express the most thermodynamically stable host-guest complex and also undergo structural changes in response to different temperatures and solvents. The insights gained about the structural bases of these Cu cages may help enable the design of other novel Cu nanostructures with functions that may usefully differ from cages that exclusively incorporate octahedral metal centers.

摘要

综述

通过亚组分自组装形成的配位笼由于其客体结合能力,已在分离、传感、催化和活性物种稳定等领域得到应用。亚组分自组装结合了动态共价键(C═N)的形成和可逆的金属配位(N→金属),使得能够以最小的合成努力制备许多复杂的多面体结构。该方法已用于制备形成多面体边缘或面的多齿吡啶 - 亚胺配体,八面体金属离子(包括Fe、Co和Zn)定义顶点。在亚组分自组装中铜的使用报道较少,因为铜的四面体配位几何结构仅需要两个双齿配体,这可能导致低核组装而不是三维笼状结构。铜的配位灵活性也给制备明确的纳米结构带来了挑战。本综述总结了一系列高阶铜基配位笼及其合成中得出的设计原则。从铜组装体的发展以及制备铜笼的挑战开始,我们讨论了通过(i)配体工程、(ii)顶点设计和(iii)客体诱导的结构转变来规避低聚物形成和控制铜的自组装过程。利用含碗烯的配体之间的芳香堆积产生一个5重联锁的[2]连环烷,而引入最小化芳香堆积的空间位阻三蝶烯亚组分则产生一个双八面体和一个六棱柱。这些结构说明了配体工程对于获得复杂铜结构的重要性。我们还通过两种不同策略探索了具有同核或异核双金属顶点的笼状结构的形成。首先,二价铜(I)螺旋体用作笼状顶点,其次,使用具有非收敛配位向量的亚组分。当使用八面体金属模板时,纳入这种双金属顶点具有挑战性,但铜的灵活性使其成为可能。铜的闭壳电子构型可以赋予笼状结构光致发光,在存在富含螺旋性的二价铜(I)顶点时提供圆偏振发光。铜的灵活配位球在添加合适客体时也促进结构转变。一个这样的体系能够自分类以表达最热力学稳定的主客体复合物,并且还能响应不同温度和溶剂而发生结构变化。关于这些铜笼结构基础所获得的见解可能有助于设计其他具有与仅包含八面体金属中心的笼状结构功能不同的新型铜纳米结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3668/12004452/3b1172f552b1/ar5c00081_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验