Ferguson John N, Caproni Leonardo, Walter Julia, Shaw Katie, Arce-Cubas Lucia, Baines Alice, Thein Min Soe, Mager Svenja, Taylor Georgia, Cackett Lee, Mathan Jyotirmaya, Vath Richard L, Martin Leo, Genty Bernard, Pè Mario Enrico, Lawson Tracy, Dell'Acqua Matteo, Kromdijk Johannes
Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK.
School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
Plant Cell. 2025 Apr 2;37(4). doi: 10.1093/plcell/koaf063.
Maize (Zea mays L.) is a global crop species in which CO2 assimilation occurs via the C4 pathway. C4 photosynthesis is typically more efficient than C3 photosynthesis under warm and dry conditions; however, despite this inherent advantage, considerable variation remains in photosynthetic efficiency for C4 species that could be leveraged to benefit crop performance. Here, we investigate the genetic architecture of nonphotochemical quenching (NPQ) and photosystem II (PSII) efficiency using a combination of high-throughput phenotyping and quantitative trait loci (QTL) mapping in a field-grown Multi-parent Advanced Generation Inter-Cross (MAGIC) mapping population. QTL mapping was followed by the identification of putative candidate genes using a combination of genomics, transcriptomics, protein biochemistry, and targeted physiological phenotyping. We identified four genes with a putative causal role in the observed QTL effects. The highest confidence causal gene was found for a large effect QTL for photosynthetic efficiency on chromosome 10, which was underpinned by allelic variation in the expression of the minor PSII antenna protein light harvesting complex photosystem II subunit (LHCB6 or CP24), mainly driven by poor expression associated with the haplotype of the F7 founder line. The historical role of this line in breeding for early flowering time may suggest that the presence of this deficient allele could be enriched in temperate maize germplasm. These findings advance our understanding of the genetic basis of NPQ and PSII efficiency in C4 plants and highlight the potential for breeding strategies aimed at optimizing photosynthetic efficiency in maize.
玉米(Zea mays L.)是一种全球种植的作物品种,其二氧化碳同化通过C4途径进行。在温暖干燥的条件下,C4光合作用通常比C3光合作用更有效;然而,尽管有这种内在优势,但C4物种的光合效率仍存在相当大的差异,可利用这些差异来提高作物性能。在这里,我们结合高通量表型分析和数量性状位点(QTL)定位,在田间种植的多亲本高级世代杂交(MAGIC)作图群体中研究了非光化学猝灭(NPQ)和光系统II(PSII)效率的遗传结构。在QTL定位之后,结合基因组学、转录组学、蛋白质生物化学和靶向生理表型分析,鉴定了推定的候选基因。我们确定了四个对观察到的QTL效应具有推定因果作用的基因。在10号染色体上发现了一个对光合效率有较大影响的QTL的最可信因果基因,该基因由次要PSII天线蛋白光捕获复合体光系统II亚基(LHCB6或CP24)表达的等位基因变异所支撑,主要是由与F7创始系单倍型相关的低表达驱动的。该品系在早期开花时间育种中的历史作用可能表明,这种缺陷等位基因在温带玉米种质中可能富集。这些发现增进了我们对C4植物NPQ和PSII效率遗传基础的理解,并突出了旨在优化玉米光合效率的育种策略的潜力。