Van Roijen Elisabeth, Kane Seth, Fan Jin, Olsson Josefine A, Bose Baishakhi, Hendrickson Thomas P, Nordahl Sarah L, Kendall Alissa, Scown Corinne D, Miller Sabbie A
Department of Civil and Environmental Engineering, University of California, Davis, California 95616, United States.
Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Environ Sci Technol. 2025 Apr 8;59(13):6556-6566. doi: 10.1021/acs.est.5c00080. Epub 2025 Mar 25.
Transforming building materials from net life-cycle COe emitters to carbon sinks is a key pathway towards decarbonizing the industrial sector. Current life-cycle assessments of materials (particularly "low-carbon" materials) often focus on cradle-to-gate emissions, which can exclude emissions and uptake (i.e., fluxes) later in the materials' life-cycle. Further, conventional COe emission characterization disregards the dynamic effects of the timing of emissions and uptake on cumulative radiative forcing from processes like manufacturing, biomass growth, and the decadal carbon storage in long-lived building materials. This work presents a framework to analyze the cradle-to-grave COe balance of building materials using a time-dependent global warming potential calculation. We apply this framework in the dynamic accounting of carbon uptake in the built environment (D-CUBE) tool and examine two case studies: concrete and cross-laminated timber (CLT). When accounting for dynamic effects, the long storage time of biogenic carbon in CLT results in reduced warming, while the slow rate of uptake via concrete carbonation does not result in significant reductions in global warming. The D-CUBE tool allows for consistent comparisons across materials and emissions mitigation strategies at varying life-cycle stages and can be adapted to other materials or systems with different lifespans and applications. The flexibility of D-CUBE and the ability to identify COe emission hot-spot life-cycle stages will be instrumental in identifying pathways to achieving net-carbon-sequestering building materials.
将建筑材料从净生命周期二氧化碳排放源转变为碳汇是工业部门脱碳的关键途径。当前对材料(特别是“低碳”材料)的生命周期评估通常侧重于从摇篮到大门的排放,这可能会排除材料生命周期后期的排放和吸收(即通量)。此外,传统的二氧化碳排放特征忽略了排放和吸收时间对制造、生物质生长以及长寿命建筑材料中数十年碳储存等过程的累积辐射强迫的动态影响。这项工作提出了一个框架,用于使用随时间变化的全球变暖潜能值计算来分析建筑材料从摇篮到坟墓的二氧化碳平衡。我们将这个框架应用于建筑环境中碳吸收的动态核算(D-CUBE)工具,并研究了两个案例:混凝土和交叉层压木材(CLT)。在考虑动态影响时,CLT中生物碳的长时间储存导致变暖减少,而通过混凝土碳化的缓慢吸收速率并未导致全球变暖的显著降低。D-CUBE工具允许在不同生命周期阶段对材料和减排策略进行一致的比较,并且可以适应具有不同寿命和应用的其他材料或系统。D-CUBE的灵活性以及识别二氧化碳排放热点生命周期阶段的能力将有助于确定实现净碳封存建筑材料的途径。