Suppr超能文献

预测应激相关障碍患者的治疗结果:一项预测模型研究的方案

Predicting Therapy Outcomes in Patients With Stress-Related Disorders: Protocol for a Predictive Modeling Study.

作者信息

Franke Föyen Ludwig, Sennerstam Victoria, Kontio Evelina, Flygare Oskar, Boman Magnus, Lindsäter Elin

机构信息

Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.

Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden.

出版信息

JMIR Res Protoc. 2025 Mar 25;14:e65790. doi: 10.2196/65790.

Abstract

BACKGROUND

While cognitive behavioral therapy has shown efficacy in treating stress-related disorders, such as adjustment disorder and exhaustion disorder, knowledge about factors contributing to treatment response is limited. Improved identification of such factors could enhance assessment procedures and treatment strategies. In addition, evaluating how traditional prediction methods and machine learning can complement each other may help bridge gaps in understanding and predicting treatment response.

OBJECTIVE

This study aims to (1) evaluate putative predictors of treatment response in patients with stress-related disorders using traditional prediction methods and (2) model treatment outcomes using a machine learning approach. This design combines the interpretability of traditional methods with the ability of machine learning to identify complex patterns.

METHODS

We will analyze data from a randomized controlled trial comparing 2 internet-delivered treatments, cognitive behavioral therapy versus an active control treatment, for patients diagnosed with adjustment disorder or exhaustion disorder (N=300). Prediction models will be based on pooled data from both treatment arms due to the limited sample size and lack of knowledge on predictors of treatment effects. Putative predictors include sociodemographic and clinical information, clinician-assessed data, self-rated symptoms, and cognitive test scores. The primary outcome of interest is responder status on the Perceived Stress Scale-10, evaluated based on the reliable change index posttreatment. For the traditional approach, univariate logistic regressions will be conducted for each predictor, followed by an ablation study for significant predictors. For the machine learning approach, 4 classifiers (logistic regression with elastic net, random forest, support vector machine, and AdaBoost) will be trained and evaluated. The dataset will be split into training (70%) and testing (30%) sets. Hyperparameter tuning will be conducted using 5-fold cross-validation with randomized search. Model performance will be assessed using balanced accuracy, precision, recall, and area under the curve.

RESULTS

All data were collected between April 2021 and September 2022. We hypothesize that key predictors will include younger age, education level, baseline symptom severity, treatment credibility, and history of sickness absence. We anticipate that the machine learning models will outperform a dummy model predicting the majority class and achieve a balanced accuracy of ≥67%, thus indicating clinical usefulness.

CONCLUSIONS

This study will contribute to the limited research on predictors of treatment outcome in stress-related disorders. The findings could support the development of more personalized and effective treatments for individuals diagnosed with adjustment disorder or exhaustion disorder, potentially improving clinical practice and patient outcomes. If successful, this dual approach may encourage future studies with larger datasets and the implementation of machine learning models in clinical settings, ultimately enhancing precision in mental health care.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/65790.

摘要

背景

虽然认知行为疗法已显示出对治疗与压力相关的疾病(如适应障碍和精疲力竭症)有效,但关于影响治疗反应的因素的了解有限。更好地识别这些因素可以改进评估程序和治疗策略。此外,评估传统预测方法和机器学习如何相互补充,可能有助于弥合在理解和预测治疗反应方面的差距。

目的

本研究旨在(1)使用传统预测方法评估与压力相关疾病患者治疗反应的假定预测因素,以及(2)使用机器学习方法对治疗结果进行建模。这种设计将传统方法的可解释性与机器学习识别复杂模式的能力相结合。

方法

我们将分析一项随机对照试验的数据,该试验比较了两种通过互联网提供的治疗方法,即认知行为疗法与积极对照治疗,用于诊断为适应障碍或精疲力竭症的患者(N = 300)。由于样本量有限且缺乏关于治疗效果预测因素的知识,预测模型将基于两个治疗组的汇总数据。假定预测因素包括社会人口统计学和临床信息、临床医生评估的数据以及自我报告的症状和认知测试分数。感兴趣的主要结果是基于治疗后可靠变化指数评估的感知压力量表-10上的反应者状态。对于传统方法,将对每个预测因素进行单变量逻辑回归,然后对显著预测因素进行剔除研究。对于机器学习方法,将训练和评估4种分类器(带弹性网络的逻辑回归、随机森林、支持向量机和AdaBoost)。数据集将分为训练集(70%)和测试集(30%)。将使用随机搜索的5折交叉验证进行超参数调整。将使用平衡准确率、精确率、召回率和曲线下面积评估模型性能。

结果

所有数据均在2021年4月至2022年9月期间收集。我们假设关键预测因素将包括较年轻的年龄、教育水平、基线症状严重程度、治疗可信度和病假史。我们预计机器学习模型将优于预测多数类别的虚拟模型,并实现≥67%的平衡准确率,从而表明其临床实用性。

结论

本研究将为与压力相关疾病治疗结果预测因素的有限研究做出贡献。研究结果可为诊断为适应障碍或精疲力竭症的个体开发更个性化、更有效的治疗方法提供支持,可能改善临床实践和患者预后。如果成功,这种双重方法可能会鼓励未来使用更大数据集的研究以及在临床环境中实施机器学习模型,最终提高精神卫生保健的精准度。

国际注册报告标识符(IRRID):DERR1-10.2196/65790。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/11979537/09e2f8c9f1e5/resprot_v14i1e65790_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验