Suppr超能文献

人工智能检测射血分数保留的心力衰竭的外部验证

External validation of artificial intelligence for detection of heart failure with preserved ejection fraction.

作者信息

Akerman Ashley P, Al-Roub Nora, Angell-James Constance, Cassidy Madeline A, Thompson Rasheed, Bosque Lorenzo, Rainer Katharine, Hawkes William, Piotrowska Hania, Leeson Paul, Woodward Gary, Pellikka Patricia A, Upton Ross, Strom Jordan B

机构信息

Ultromics Ltd, 4630 Kingsgate, Cascade Way, Oxford Business Park South, Oxford, OX4 2SU, UK.

Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA.

出版信息

Nat Commun. 2025 Mar 25;16(1):2915. doi: 10.1038/s41467-025-58283-7.

Abstract

Artificial intelligence (AI) models to identify heart failure (HF) with preserved ejection fraction (HFpEF) based on deep-learning of echocardiograms could help address under-recognition in clinical practice, but they require extensive validation, particularly in representative and complex clinical cohorts for which they could provide most value. In this study enrolling patients with HFpEF (cases; n = 240), and age, sex, and year of echocardiogram matched controls (n = 256), we compare the diagnostic performance (discrimination, calibration, classification, and clinical utility) and prognostic associations (mortality and HF hospitalization) between an updated AI HFpEF model (EchoGo Heart Failure v2) and existing clinical scores (H2FPEF and HFA-PEFF). The AI HFpEF model and H2FPEF score demonstrate similar discrimination and calibration, but classification is higher with AI than H2FPEF and HFA-PEFF, attributable to fewer intermediate scores, due to discordant multivariable inputs. The continuous AI HFpEF model output adds information beyond the H2FPEF, and integration with existing scores increases correct management decisions. Those with a diagnostic positive result from AI have a two-fold increased risk of the composite outcome. We conclude that integrating an AI HFpEF model into the existing clinical diagnostic pathway would improve identification of HFpEF in complex clinical cohorts, and patients at risk of adverse outcomes.

摘要

基于超声心动图深度学习来识别射血分数保留的心力衰竭(HFpEF)的人工智能(AI)模型有助于解决临床实践中识别不足的问题,但它们需要广泛验证,特别是在它们能提供最大价值的代表性和复杂临床队列中。在这项研究中,我们纳入了HFpEF患者(病例组;n = 240)以及年龄、性别和超声心动图年份匹配的对照组(n = 256),比较了更新的AI HFpEF模型(EchoGo心力衰竭v2)与现有临床评分(H2FPEF和HFA - PEFF)之间的诊断性能(辨别力、校准、分类和临床效用)以及预后关联(死亡率和HF住院率)。AI HFpEF模型和H2FPEF评分显示出相似的辨别力和校准,但AI的分类高于H2FPEF和HFA - PEFF,这归因于多变量输入不一致导致中间分数较少。连续的AI HFpEF模型输出增加了H2FPEF之外的信息,与现有评分相结合可增加正确的管理决策。AI诊断结果为阳性的患者复合结局风险增加两倍。我们得出结论,将AI HFpEF模型整合到现有临床诊断途径中,将改善在复杂临床队列中对HFpEF的识别以及对有不良结局风险患者的识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c55/11937413/9498c85727c5/41467_2025_58283_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验