Suppr超能文献

通过计算流体动力学研究听力设备中风噪声的物理驱动机制。

Investigation of the physical driving mechanisms of wind noise in hearing devices by computational fluid dynamics.

作者信息

Riedel Jörg, Becker Stefan, Näger Christoph, Czwielong Felix, Schoder Stefan

机构信息

Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Fluid Mechanics (LSTM), Cauerstraße 4, 91058, Erlangen, Germany.

Graz University of Technology, Institute of Fundamentals and Theory of Electrical Engineering, Inffeldgasse 16c, 8010, Graz, Austria.

出版信息

Sci Rep. 2025 Mar 25;15(1):10290. doi: 10.1038/s41598-025-93303-y.

Abstract

Wind noise impairs the functionality of hearing aids and hearables outdoors or during sports by interfering with communication signals. This study aims to visualize the wind noise generation patterns around the human head by validated scale-resolved flow simulations. For the first time, the three-dimensional turbulent flow field at wind speeds of 10 km/h and 20 km/h around a female, a male and an artificial head is analyzed. It is possible to extract non-accessible data even inside the body, e.g., the pressure field deep inside the ear cavity in front of the eardrum. Head-geometry-independent flow features are identified. In the temple area, large-scale vortex shedding occurs. Small-scale vortices detach at the upper edge of the pinna and across the entire ear area. At typical microphone positions of behind the ear worn hearing devices, the pressure fluctuations are more pronounced than those at the auditory canal entrance. The tragus of the pinna plays a decisive role in attenuating wind noise in front of the entrance to the auditory canal. Anatomically exact ear canals ensure that velocity fluctuations are attenuated more effectively compared to an artificial one. At 20 km/h, the A-weighted pressure levels recorded at the microphone location of a behind the ear worn hearing devices exceed 85 dB(A). The results lead to a first understanding of wind noise effects and how they increase the perception threshold for recognition. Manufacturers can use the model to facilitate the wind noise optimal placement of microphones in new products to enhance communication under windy conditions.

摘要

风噪声会干扰通信信号,从而在户外或运动时损害助听器和可穿戴式听力设备的功能。本研究旨在通过经过验证的尺度分辨流模拟来可视化人头部周围的风噪声产生模式。首次分析了风速为10公里/小时和20公里/小时时,女性、男性和人工头部周围的三维湍流场。甚至可以提取身体内部无法获取的数据,例如鼓膜前方耳腔内深处的压力场。识别出与头部几何形状无关的流动特征。在颞部区域,会发生大规模涡旋脱落。小尺度涡旋在耳廓上边缘和整个耳部区域分离。在耳后佩戴式听力设备的典型麦克风位置,压力波动比耳道入口处更明显。耳廓的耳屏在衰减耳道入口前方的风噪声方面起决定性作用。与人工耳道相比,解剖学上精确的耳道能更有效地衰减速度波动。在20公里/小时时,耳后佩戴式听力设备麦克风位置记录的A加权声压级超过85分贝(A)。这些结果让我们初步了解了风噪声的影响以及它们如何提高识别的感知阈值。制造商可以使用该模型来优化新产品中麦克风的位置,以减少风噪声,从而在有风条件下增强通信效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2471/11937389/a30155d8c5d7/41598_2025_93303_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验