Suppr超能文献

生物改性氧化石墨烯的双酸碱催化:一条通往具有抗菌特性的聚氢喹啉的可持续途径。

Dual acid-base catalysis with biologically modified graphene oxide: a sustainable route to polyhydroquinolines with antimicrobial properties.

作者信息

Amiri-Zirtol Leila, Emtiazi Hamideh, Abootalebi Seyedeh Narjes, Gholami Ahmad

机构信息

Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

出版信息

Sci Rep. 2025 Mar 25;15(1):10194. doi: 10.1038/s41598-025-94389-0.

Abstract

This article conducts an in-depth examination of graphene oxide-aspartic acid (GO-As) as a novel bifunctional nano-organocatalyst distinguished by both catalytic and antibacterial properties. The research elucidates the synthesis of GO through Hummer's method, followed by the covalent attachment of aspartic acid to the surface of GO nanosheets. This innovative approach is particularly notable as it circumvents the use of hazardous chemicals, thereby promoting environmental sustainability. The newly developed catalyst underwent rigorous analysis employing a variety of spectroscopic techniques, including Fourier Transform Infrared (FT-IR) spectroscopy, Energy-Dispersive X-ray Spectroscopy (EDX), mapping, Field Emission Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Raman spectroscopy. The findings indicate that the catalyst effectively synthesizes polyhydroquinoline derivatives while demonstrating significant stability over multiple reuse cycles, underscoring its potential applicability in organic synthesis. Furthermore, the antibacterial properties of the GO-modified aspartic acid were evaluated against six pathogenic bacterial species. The results reveal substantial antibacterial activity against both Gram-positive and Gram-negative strains, including two antibiotic-resistant bacteria: Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococcus (VRE), thermogravimetric analysis (TGA), and Raman. In conclusion, the investigation of GO-As as a bifunctional heterogeneous nano-organocatalyst represents a promising advancement in the development of environmentally friendly and effective catalysts with noteworthy antibacterial characteristics.

摘要

本文深入研究了氧化石墨烯-天冬氨酸(GO-As),它是一种具有催化和抗菌特性的新型双功能纳米有机催化剂。该研究阐明了通过Hummer法合成GO的过程,随后将天冬氨酸共价连接到GO纳米片的表面。这种创新方法特别值得注意,因为它避免了使用危险化学品,从而促进了环境可持续性。新开发的催化剂采用了多种光谱技术进行了严格分析,包括傅里叶变换红外(FT-IR)光谱、能量色散X射线光谱(EDX)、映射、场发射扫描电子显微镜(SEM)、X射线衍射(XRD)、热重分析(TGA)和拉曼光谱。研究结果表明,该催化剂能有效合成聚氢喹啉衍生物,并且在多次重复使用循环中表现出显著的稳定性,突出了其在有机合成中的潜在适用性。此外,还评估了GO修饰的天冬氨酸对六种致病细菌的抗菌性能。结果显示对革兰氏阳性和革兰氏阴性菌株均具有显著的抗菌活性,包括两种耐药菌:耐甲氧西林金黄色葡萄球菌(MRSA)、耐万古霉素肠球菌(VRE)、热重分析(TGA)和拉曼光谱。总之,对GO-As作为双功能多相纳米有机催化剂的研究代表了在开发具有显著抗菌特性的环境友好型高效催化剂方面的一项有前景的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb96/11937246/499915b25260/41598_2025_94389_Fig19_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验