Rakovics Márton, Meznerics Fanni Adél, Fehérvári Péter, Kói Tamás, Csupor Dezső, Bánvölgyi András, Rapszky Gabriella Anna, Engh Marie Anne, Hegyi Péter, Harnos Andrea
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
Faculty of Social Sciences, Department of Statistics, ELTE Eötvös Loránd University, Budapest, Hungary.
Sci Rep. 2025 Mar 26;15(1):10350. doi: 10.1038/s41598-025-95282-6.
COVID-19 is a disease in which early prognosis of severity is critical for desired patient outcomes and for the management of limited resources like intensive care unit beds and ventilation equipment. Many prognostic statistical tools have been developed for the prediction of disease severity, but it is still unclear which ones should be used in practice. We aim to guide clinicians in choosing the best available tools to make optimal decisions and assess their role in resource management and assess what can be learned from the COVID-19 scenario for development of prediction models in similar medical applications. Using the five major medical databases: MEDLINE (via PubMed), Embase, Cochrane Library (CENTRAL), Cochrane COVID-19 Study Register, and Scopus, we conducted a comprehensive systematic review of prediction tools between 2020 January and 2023 April for hospitalized COVID-19 patients. We identified both the relevant confounding factors of tool performance using the MetaForest algorithm and the best tools-comparing linear, machine learning, and deep learning methods-with mixed-effects meta-regression models. The risk of bias was evaluated using the PROBAST tool. Our systematic search identified eligible 27,312 studies, out of which 290 were eligible for data extraction, reporting on 430 independent evaluations of severity prediction tools with ~ 2.8 million patients. Neural Network-based tools have the highest performance with a pooled AUC of 0.893 (0.748-1.000), 0.752 (0.614-0.853) sensitivity, 0.914 (0.849-0.952) specificity, using clinical, laboratory, and imaging data. The relevant confounders of performance are the geographic region of patients, the rate of severe cases, and the use of C-Reactive Protein as input data. 88% of studies have a high risk of bias, mostly because of deficiencies in the data analysis. All investigated tools in use aid decision-making for COVID-19 severity prediction, but Machine Learning tools, specifically Neural Networks clearly outperform other methods, especially in cases when the basic characteristics of severe and non-severe patient groups are similar, and without the need for more data. When highly specific biomarkers are not available-such as in the case of COVID-19-practitioners should abandon general clinical severity scores and turn to disease specific Machine Learning tools.
新冠病毒病(COVID-19)是一种疾病,对于其严重程度的早期预后判断,对于实现理想的患者治疗结果以及管理诸如重症监护病房床位和通气设备等有限资源而言至关重要。已经开发了许多用于预测疾病严重程度的预后统计工具,但在实际应用中究竟应使用哪些工具仍不明确。我们旨在指导临床医生选择最佳可用工具以做出最优决策,并评估这些工具在资源管理中的作用,同时评估从COVID-19的情况中可以学到什么,以用于类似医学应用中预测模型的开发。我们使用五个主要医学数据库:医学索引数据库(通过PubMed)、Embase、考克兰图书馆(CENTRAL)、考克兰COVID-19研究注册库和Scopus,对2020年1月至2023年4月期间针对住院COVID-19患者的预测工具进行了全面的系统评价。我们使用MetaForest算法确定了工具性能的相关混杂因素,并使用混合效应元回归模型确定了最佳工具——比较线性、机器学习和深度学习方法。使用PROBAST工具评估偏倚风险。我们的系统检索共识别出27312项符合条件的研究,其中290项符合数据提取条件,报告了对严重程度预测工具的430次独立评估,涉及约280万患者。基于神经网络的工具性能最高,使用临床、实验室和影像数据时,合并曲线下面积(AUC)为0.893(0.748 - 1.000),灵敏度为0.752(0.614 - 0.853),特异度为0.914(0.849 - 0.952)。性能的相关混杂因素包括患者的地理区域、重症病例发生率以及将C反应蛋白用作输入数据。88%的研究存在高偏倚风险,主要原因是数据分析存在缺陷。所有调查中使用的工具都有助于COVID-19严重程度预测的决策,但机器学习工具,特别是神经网络明显优于其他方法,尤其是在重症和非重症患者组的基本特征相似且无需更多数据的情况下。当没有高特异性生物标志物时——如在COVID-19的情况下——从业者应摒弃一般临床严重程度评分,转而使用针对该疾病的机器学习工具。