Suppr超能文献

COVID-19 患者死亡率的临床预测模型:外部验证和个体参与者数据荟萃分析。

Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis.

机构信息

Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands

Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Netherlands.

出版信息

BMJ. 2022 Jul 12;378:e069881. doi: 10.1136/bmj-2021-069881.

Abstract

OBJECTIVE

To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19.

DESIGN

Two stage individual participant data meta-analysis.

SETTING

Secondary and tertiary care.

PARTICIPANTS

46 914 patients across 18 countries, admitted to a hospital with polymerase chain reaction confirmed covid-19 from November 2019 to April 2021.

DATA SOURCES

Multiple (clustered) cohorts in Brazil, Belgium, China, Czech Republic, Egypt, France, Iran, Israel, Italy, Mexico, Netherlands, Portugal, Russia, Saudi Arabia, Spain, Sweden, United Kingdom, and United States previously identified by a living systematic review of covid-19 prediction models published in , and through PROSPERO, reference checking, and expert knowledge.

MODEL SELECTION AND ELIGIBILITY CRITERIA

Prognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor.

METHODS

Eight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters.

MAIN OUTCOME MEASURES

30 day mortality or in-hospital mortality.

RESULTS

Datasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al's model (0.96, 0.59 to 1.55, 0.21 to 4.28).

CONCLUSION

The prognostic value of the included models varied greatly between the data sources. Although the Knight 4C Mortality Score and Wang clinical model appeared most promising, recalibration (intercept and slope updates) is needed before implementation in routine care.

摘要

目的

对外验证各种预测模型和评分规则,以预测因新冠肺炎住院患者的短期死亡率。

设计

两阶段个体参与者数据荟萃分析。

设置

二级和三级护理。

参与者

来自 18 个国家的 46914 名患者,他们于 2019 年 11 月至 2021 年 4 月因聚合酶链反应确诊的新冠肺炎入住医院。

数据来源

巴西、比利时、中国、捷克共和国、埃及、法国、伊朗、以色列、意大利、墨西哥、荷兰、葡萄牙、俄罗斯、沙特阿拉伯、西班牙、瑞典、英国和美国的多个(聚类)队列,这些队列先前通过对发表的新冠肺炎预测模型的实时系统评价确定,并通过 PROSPERO、参考文献检查和专家知识确定。

模型选择和入选标准

通过实时系统评价和联系专家确定的预测模型。排除了在 PROBAST(预测模型研究风险偏倚评估工具)参与者领域风险较高或适用性较差的先验模型。

方法

确定了 8 种具有不同预测因子的预后模型,并对其进行了验证。对包括的聚类进行了两阶段个体参与者数据荟萃分析,以评估估计模型一致性(C)统计量、校准斜率、大校准和观察到的预期比(O:E)。

主要结局指标

30 天死亡率或住院死亡率。

结果

数据集包含来自 18 个不同国家的 27 个聚类,包含 46914 名患者的数据。汇总估计值范围为 0.67 至 0.80(C 统计量)、0.22 至 1.22(校准斜率)和 0.18 至 2.59(O:E 比),并且存在很大的研究间异质性。Knight 等人的 4C 死亡率评分(汇总 C 统计量 0.80,95%置信区间 0.75 至 0.84,95%预测区间 0.72 至 0.86)和 Wang 等人的临床模型(0.77,0.73 至 0.80,0.63 至 0.87)具有最高的区分能力。平均而言,4C 死亡率评分(汇总 O:E 0.71,95%置信区间 0.45 至 1.11,95%预测区间 0.21 至 2.39)预测的死亡人数比实际观察到的少 29%,Wang 临床模型(0.65,0.52 至 0.82,0.23 至 1.89)预测的死亡人数少 35%,Xie 等人的模型(0.96,0.59 至 1.55,0.21 至 4.28)预测的死亡人数少 4%。

结论

纳入模型的预后价值在不同数据来源之间差异很大。尽管 Knight 4C 死亡率评分和 Wang 临床模型似乎最有希望,但在常规护理中实施之前需要进行重新校准(截距和斜率更新)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ab0/9273913/9fb000ac9e1c/jonv069881.f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验