Suppr超能文献

基于机器学习的新型模型评估下的冠状动脉疾病预测试概率模型的比较评估

Comparative Evaluation of Pre-Test Probability Models for Coronary Artery Disease with Assessment of a New Machine Learning-Based Model.

作者信息

Kim Kyung-A, Kang Min Soo, Choi Byoung Geol, Ahn Ji Hun, Kim Wonho, Chung Myung-Ae

机构信息

Department of Medical Artificial Intelligence, Graduate School, Eulji University, Uijeongbu, Korea.

Department of Medical Artificial Intelligence, Eulji University, Seongnam, Korea.

出版信息

Yonsei Med J. 2025 Apr;66(4):211-217. doi: 10.3349/ymj.2024.0067.

Abstract

PURPOSE

This study aimed to validate pivotal pre-test probability (PTP)-coronary artery disease (CAD) models (CAD consortium model and IJC-CAD model).

MATERIALS AND METHODS

Traditional PTP models-CAD consortium models: two traditional PTP models were used under the CAD consortium framework, namely CAD1 and CAD2. Machine learning (ML)-based PTP models: two ML-based PTP models were derived from CAD1 and CAD2, and used to enhance predictive capabilities [ML-CAD2 and ML-IJC (IJC-CAD)]. The primary endpoint was obstructive CAD. The performance evaluation of these PTP models was conducted using receiver-operating characteristic analysis.

RESULTS

The study included 238 participants, among whom 157 individuals (65.9% of the total sample) had CAD. The IJC-CAD model demonstrated the highest performance with an area under the curve (AUC) of 0.860 [95% confidence interval (CI): 0.812-0.909]. Following this, the ML-CAD2 model exhibited an AUC of 0.814 (95% CI: 0.758-0.870), CAD1 showed an AUC of 0.767 (95% CI: 0.705-0.830), and CAD2 had an AUC of 0.785 (95% CI: 0.726-0.845). Each of the PTP models was adjusted to have a CAD score cutoff that classified cases with a sensitivity of over 95%. The respective cutoff values were as follows: CAD1 and CAD2 >12, ML-CAD2 >0.380, and IJC-CAD >0.367. All PTP models achieved a CAD sensitivity of over 95%. Similar to the AUC performance, the accuracy of the PTP models was highest for IJC-CAD, reaching 80.3%. The accuracy of ML-CAD2 was 77.7%, while that for CAD1 and CAD2 was 74.8% and 75.2%, respectively.

CONCLUSION

ML-CAD2 and IJC-CAD showed superior performance compared to traditional existing models (CAD1 and CAD2).

摘要

目的

本研究旨在验证关键的预测试概率(PTP)-冠状动脉疾病(CAD)模型(CAD联盟模型和IJC-CAD模型)。

材料与方法

传统PTP模型- CAD联盟模型:在CAD联盟框架下使用了两种传统PTP模型,即CAD1和CAD2。基于机器学习(ML)的PTP模型:从CAD1和CAD2派生了两种基于ML的PTP模型,用于增强预测能力[ML-CAD2和ML-IJC(IJC-CAD)]。主要终点是阻塞性CAD。使用受试者操作特征分析对这些PTP模型进行性能评估。

结果

该研究纳入了238名参与者,其中157人(占总样本的65.9%)患有CAD。IJC-CAD模型表现最佳,曲线下面积(AUC)为0.860[95%置信区间(CI):0.812 - 0.909]。其次,ML-CAD2模型的AUC为0.814(95%CI:0.758 - 0.870),CAD1的AUC为0.767(95%CI:0.705 - 0.830),CAD2的AUC为0.785(95%CI:0.726 - 0.845)。每个PTP模型都进行了调整,使其CAD评分临界值能将病例分类,敏感性超过95%。各自的临界值如下:CAD1和CAD2>12,ML-CAD2>0.380,IJC-CAD>0.367。所有PTP模型的CAD敏感性均超过95%。与AUC表现类似,PTP模型的准确性以IJC-CAD最高,达到80.3%。ML-CAD2的准确性为77.7%,而CAD1和CAD2的准确性分别为74.8%和75.2%。

结论

与传统现有模型(CAD1和CAD2)相比,ML-CAD2和IJC-CAD表现更优。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0a/11955395/788702ecf215/ymj-66-211-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验