Yeşilbaş Merve, Vu Tuan H, Hodyss Robert, Poch Olivier, Schmitt Bernard, Choukroun Mathieu, Johnson Paul V, Bishop Janice L
Carl Sagan Center, SETI Institute, Mountain View, California 94043, United States.
Department of Chemistry, Umeå University, Umeå SE-90187, Sweden.
ACS Earth Space Chem. 2025 Feb 28;9(3):433-444. doi: 10.1021/acsearthspacechem.4c00137. eCollection 2025 Mar 20.
Calcium sulfate minerals are found in multiple environments on Earth and Mars, with chloride (Cl) salts widely distributed on both planets. Low-temperature studies have explored geochemical processes, including the formation of transient liquid water and ion migration on Mars. Some Cl-salts (e.g., NaCl and CaCl) can dissolve gypsum (CaSO·2HO) in certain environments, making gypsum-Cl salt interactions significant. Additionally, gypsum's geochemical transformation at high temperatures reveals dehydration pathways crucial for understanding Mars' aqueous history and potential for life. This study examines gypsum dehydration through (i) thermal analyses and (ii) interactions with Cl-salts over a temperature range of -90 to 400 °C. We applied three spectroscopic techniques (Raman, visible/near-infrared, and mid-IR) plus X-ray diffraction (XRD) to analyze these samples under variable conditions. This study also provides a low-temperature spectral data set for gypsum and gypsum-Cl salt mixtures, beneficial for orbital analyses. Our findings reveal that experimental (i) heating rates, (ii) temperature ranges, (iii) relative masses of gypsum and Cl-salts, and (iv) dehydration environments (e.g., in situ and in vacuo) influence Ca-sulfate phase formation. Although we find different results in some cases, this study demonstrates that changing experimental conditions affects the detectability and transformation of gypsum. Further, these results indicate that the geochemical environmental conditions on Mars play a role in gypsum's geochemical transformation to dehydrated components. This study also provides structural and chemical data for Ca sulfate assemblages from vibrational spectroscopy and XRD, which extends our knowledge of gypsum and related materials under variable conditions, thus aiding orbital and surface planetary analyses that may help to advance our understanding of planetary geochemistry on Mars.
硫酸钙矿物在地球和火星的多种环境中都有发现,而氯盐在这两个星球上广泛分布。低温研究探索了地球化学过程,包括火星上瞬态液态水的形成和离子迁移。在某些环境中,一些氯盐(如氯化钠和氯化钙)可以溶解石膏(CaSO₄·2H₂O),这使得石膏与氯盐的相互作用变得十分重要。此外,石膏在高温下的地球化学转变揭示了脱水途径,这对于理解火星的水历史和生命潜力至关重要。本研究通过(i)热分析和(ii)在-90至400°C温度范围内与氯盐的相互作用来研究石膏脱水。我们应用了三种光谱技术(拉曼光谱、可见/近红外光谱和中红外光谱)以及X射线衍射(XRD)来在可变条件下分析这些样品。本研究还提供了石膏和石膏-氯盐混合物的低温光谱数据集,这对轨道分析有益。我们的研究结果表明,实验(i)加热速率、(ii)温度范围、(iii)石膏和氯盐的相对质量以及(iv)脱水环境(如原位和真空)会影响硫酸钙相的形成。尽管在某些情况下我们得到了不同的结果,但本研究表明改变实验条件会影响石膏的可检测性和转变。此外,这些结果表明火星上的地球化学环境条件在石膏向脱水成分的地球化学转变中发挥了作用。本研究还通过振动光谱和XRD提供了硫酸钙组合的结构和化学数据,这扩展了我们对可变条件下石膏及相关材料的认识,从而有助于轨道和表面行星分析,这可能有助于推进我们对火星行星地球化学的理解。