Hasler Jill, Ma Yanyuan, Wei Yizheng, Parikh Ravi, Chen Jinbo
Fox Chase Cancer Center.
Department of Statistics, Pennsylvania State University.
Ann Appl Stat. 2024 Dec;18(4):3318-3337. doi: 10.1214/24-AOAS1938. Epub 2024 Oct 31.
When using electronic health records (EHRs) for clinical and translational research, additional data is often available from external sources to enrich the information extracted from EHRs. For example, academic biobanks have more granular data available, and patient reported data is often collected through small-scale surveys. It is common that the external data is available only for a small subset of patients who have EHR information. We propose efficient and robust methods for building and evaluating models for predicting the risk of binary outcomes using such integrated EHR data. Our method is built upon an idea derived from the two-phase design literature that modeling the availability of a patient's external data as a function of an EHR-based preliminary predictive score leads to effective utilization of the EHR data. Through both theoretical and simulation studies, we show that our method has high efficiency for estimating log-odds ratio parameters, the area under the ROC curve, as well as other measures for quantifying predictive accuracy. We apply our method to develop a model for predicting the short-term mortality risk of oncology patients, where the data was extracted from the University of Pennsylvania hospital system EHR and combined with survey-based patient reported outcome data.
在将电子健康记录(EHR)用于临床和转化研究时,通常可以从外部来源获取额外数据,以丰富从EHR中提取的信息。例如,学术生物样本库拥有更详细的数据,且患者报告的数据通常通过小规模调查收集。常见的情况是,外部数据仅适用于拥有EHR信息的一小部分患者。我们提出了高效且稳健的方法,用于构建和评估使用此类整合EHR数据预测二元结局风险的模型。我们的方法基于从两阶段设计文献中衍生出的一个想法,即将患者外部数据的可用性建模为基于EHR的初步预测分数的函数,从而实现EHR数据的有效利用。通过理论和模拟研究,我们表明我们的方法在估计对数优势比参数、ROC曲线下面积以及其他量化预测准确性的指标方面具有很高的效率。我们应用我们的方法开发了一个预测肿瘤患者短期死亡风险的模型,该模型的数据从宾夕法尼亚大学医院系统的EHR中提取,并与基于调查的患者报告结局数据相结合。