Saladino Giovanni Marco, Mangarova Dilyana B, Nernekli Kerem, Wang Jie, Annio Giacomo, Varniab Zahra Shokri, Khatoon Zubeda, Ribeiro Morais Goreti, Shi Yifeng, Chang Edwin, Pisani Laura J, Tikhomirov Grigory, Falconer Robert A, Daldrup-Link Heike E
Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
Nanoscale. 2025 Apr 17;17(16):9986-9995. doi: 10.1039/d5nr00447k.
Theranostic nanoparticles (NPs) have been designed for simultaneous therapeutic and diagnostic purposes, thereby enabling personalized cancer therapy and drug tracking. However, studies thus far have focused on imaging NP tumor accumulation at the macroscopic level and correlating results with histology. Limited evidence exists on whether NP tumor contrast enhancement on magnetic resonance imaging (MRI) correlates with NP tumor accumulation at the microscopic level. To address this gap, the purpose of our study was to correlate quantitative MRI estimates of NP accumulation with NP signal quantification as measured through two-photon intravital microscopy (IVM) in an orthotopic murine glioblastoma multiforme model (GBM). To enable multimodal imaging, we designed dual-mode NPs, composed of a carbohydrate-coated magnetic core (Ferumoxytol) as an MRI contrast agent, and a conjugated fluorophore (FITC) for IVM detection. We administered these NPs with or without a conjugated vascular disrupting agent (VDA) to assess its effect on NP delivery to GBM. We correlated MRI contrast enhancement in tumors, quantified as relaxation time, with IVM fluorescence spatial decay rate. Results demonstrated a significantly lower tumor relaxation time and spatial decay rate in tumors targeted with VDA-conjugated NPs compared to unconjugated NPs. histological analyses validated the observations. The presented multimodal imaging approach enabled a quantitative correlation between MRI contrast enhancement at the macroscopic level and NP accumulation in the tumor microenvironment. These studies lay the groundwork for the precise evaluation of the tumor targeting of theranostic NPs.
治疗诊断纳米颗粒(NPs)已被设计用于同时实现治疗和诊断目的,从而实现个性化癌症治疗和药物追踪。然而,迄今为止的研究主要集中在宏观层面上成像纳米颗粒在肿瘤中的积累情况,并将结果与组织学相关联。关于磁共振成像(MRI)上纳米颗粒的肿瘤对比增强是否与微观层面上纳米颗粒在肿瘤中的积累相关,现有证据有限。为了填补这一空白,我们研究的目的是在原位小鼠多形性胶质母细胞瘤模型(GBM)中,将通过双光子活体显微镜(IVM)测量的纳米颗粒信号定量与纳米颗粒积累的定量MRI估计值相关联。为了实现多模态成像,我们设计了双模纳米颗粒,其由作为MRI造影剂的碳水化合物包被的磁性核心(Ferumoxytol)和用于IVM检测的共轭荧光团(FITC)组成。我们在有或没有共轭血管破坏剂(VDA)的情况下给予这些纳米颗粒,以评估其对纳米颗粒递送至GBM的影响。我们将肿瘤中的MRI对比增强(以弛豫时间量化)与IVM荧光空间衰减率相关联。结果表明,与未共轭的纳米颗粒相比,用VDA共轭的纳米颗粒靶向的肿瘤中的肿瘤弛豫时间和空间衰减率显著更低。组织学分析证实了这些观察结果。所提出的多模态成像方法能够在宏观层面上的MRI对比增强与肿瘤微环境中纳米颗粒的积累之间建立定量相关性。这些研究为精确评估治疗诊断纳米颗粒的肿瘤靶向性奠定了基础。