Suppr超能文献

用于连续供电和可控药物释放的便携式多离子反向电渗析

Portable multi-ionic reverse electrodialysis for continuous power supply and controllable drug release.

作者信息

Cho Hyewon, Woo Jungjae, Jeon Haneul, Kim Hyejeong, Han Chang-Soo

机构信息

School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.

Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.

出版信息

Lab Chip. 2025 Apr 8;25(8):2109-2118. doi: 10.1039/d4lc01012d.

Abstract

Bioinspired ionic power devices have been investigated due to their high biocompatibility and potential for sustainable energy conversion through ion concentration gradients. However, recent research into portable ionic power devices has primarily focused on hydrogel-based stacking elements, such as ion-selective gels and ionic reservoirs, to enhance productivity. However, this approach results in ionic resource consumption for the operating time. In this study, we propose a portable ionic power generator that provides continuous electricity by integrating multi-ionic reverse electrodialysis (MRED) with a passive capillary micropump for electrolyte absorption. The integrated MRED system was fabricated on a portable fluidic chip with optimizations of absorbing performance, electrolyte concentration, and shortcut current regulation attaining maximum potential of 267.45 mV and current of 4.42 mA. Furthermore, consistent and continuous performance for 25 min was achieved by incorporating cotton flow resistors, which modulate the electrolyte absorbing rate at the electrolyte contact region of the pumps. The electric potential was controlled by adjusting the cotton mass inspiring controllable drug release iontophoresis where high voltage enhances charged drug penetration. This study paves the way for a new form of ionic power supply for patch-type wearable health devices.

摘要

受生物启发的离子动力装置因其高生物相容性以及通过离子浓度梯度实现可持续能量转换的潜力而受到研究。然而,近期对便携式离子动力装置的研究主要集中在基于水凝胶的堆叠元件上,如离子选择性凝胶和离子储存器,以提高生产率。然而,这种方法会导致运行期间的离子资源消耗。在本研究中,我们提出了一种便携式离子动力发生器,它通过将多离子反向电渗析(MRED)与用于电解质吸收的被动毛细管微泵集成,来提供持续电力。集成的MRED系统被制作在一个便携式流体芯片上,通过优化吸收性能、电解质浓度和短路电流调节,实现了267.45 mV的最大电位和4.42 mA的电流。此外,通过加入棉花流阻器实现了25分钟的持续稳定性能,棉花流阻器可调节泵的电解质接触区域的电解质吸收率。通过调整棉花质量来控制电势,激发可控的药物释放离子电渗疗法,其中高电压可增强带电药物的渗透。本研究为贴片式可穿戴健康设备的新型离子电源形式铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验