Suppr超能文献

ESENA:一种用于挖掘头皮脑电图数据的新型时空事件网络信息方法。

ESENA: A Novel Spatiotemporal Event Network Information Approach for Mining Scalp EEG Data.

作者信息

Dong Qiwei, Yang Runchen, Wang Xinrui, Feng Zongwen, Liu Chenggan, Chen Shiyu, Zhou Yuxi, Yao Dezhong, Ren Junru, Xu Qi, Dong Li

机构信息

Institute of Basic Medical Sciences (IBMS), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Brain Behav. 2025 Mar;15(3):e70426. doi: 10.1002/brb3.70426.

Abstract

OBJECTIVE

Brain activity possesses unique spatiotemporal characteristics. However, few electroencephalogram (EEG) analysis methods were designed to capture these features. Here, we developed a novel approach to mine spatiotemporal information contained in EEG data.

METHODS

In this work, a novel approach, named EEG Spatiotemporal Event Network Analysis (ESENA), was proposed to fully capture the complex spatiotemporal patterns of EEG data during rich and complex stimulations. The essence of this method is to map power events onto network nodes and define connections on the basis of the temporal sequence of these events, thereby establishing a spatiotemporal network structure. Next, the performance and feasibility of ESENA were tested using three resting-state and game-playing state EEG datasets.

RESULTS

For eyes-closed resting-state EEG, specific patterns of spatiotemporal event networks (SENs) were revealed by ESENA for different frequency bands, and the links between SENs were mainly located in regions of rhythmic activity revealed by the relative power spectrum. In the comparison between eyes-closed and eyes-open resting-state EEG, ESENA provided additional important spatiotemporal information in the delta frequency band in the frontal lobe, and in the theta frequency band in the frontoparietal lobes. In the comparison between the game-playing state and eyes-closed resting-state EEG, spatiotemporal information in the delta frequency band in the frontoparietal lobes, the theta frequency band in the parietotemporal lobe and the alpha frequency band in the occipitoparietal lobes was additionally uncovered by ESENA. Moreover, these SENs were correlated with behavioral data.

CONCLUSION

Our findings demonstrated that the proposed ESENA method is superior to traditional EEG methods in discovering spatiotemporal patterns from EEG data and has the potential to become an important tool providing deeper insights into the brain's complex networks.

摘要

目的

脑活动具有独特的时空特征。然而,很少有脑电图(EEG)分析方法旨在捕捉这些特征。在此,我们开发了一种新颖的方法来挖掘EEG数据中包含的时空信息。

方法

在这项工作中,提出了一种名为EEG时空事件网络分析(ESENA)的新颖方法,以充分捕捉丰富复杂刺激期间EEG数据的复杂时空模式。该方法的本质是将功率事件映射到网络节点上,并根据这些事件的时间序列定义连接,从而建立时空网络结构。接下来,使用三个静息状态和游戏状态的EEG数据集测试了ESENA的性能和可行性。

结果

对于闭眼静息状态EEG,ESENA揭示了不同频段的时空事件网络(SENs)的特定模式,并且SENs之间的联系主要位于相对功率谱显示的节律活动区域。在闭眼和睁眼静息状态EEG的比较中,ESENA在前额叶的δ频段以及额顶叶的θ频段提供了额外的重要时空信息。在游戏状态和闭眼静息状态EEG的比较中,ESENA还额外揭示了额顶叶的δ频段、颞顶叶的θ频段以及枕顶叶的α频段的时空信息。此外,这些SENs与行为数据相关。

结论

我们的研究结果表明,所提出的ESENA方法在从EEG数据中发现时空模式方面优于传统的EEG方法,并且有潜力成为一种重要工具,为深入了解大脑的复杂网络提供更深刻的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8056/11937924/b756ccc38205/BRB3-15-e70426-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验