Suppr超能文献

从大数据视角对大规模连续头皮脑电图进行定量信号质量评估。

Quantitative signal quality assessment for large-scale continuous scalp electroencephalography from a big data perspective.

作者信息

Zhao Lingling, Zhang Yufan, Yu Xue, Wu Hanxi, Wang Lei, Li Fali, Duan Mingjun, Lai Yongxiu, Liu Tiejun, Dong Li, Yao Dezhong

机构信息

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.

School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.

出版信息

Physiol Meas. 2023 Mar 14;44(3). doi: 10.1088/1361-6579/ac890d.

Abstract

. Despite electroencephalography (EEG) being a widely used neuroimaging technique with an excellent temporal resolution, in practice, the signals are heavily contaminated by artifacts masking responses of interest in an experiment. It is thus essential to guarantee a prompt and effective detection of artifacts that provides quantitative quality assessment (QA) on raw EEG data. This type of pipeline is crucial for large-scale EEG studies. However, current EEG QA studies are still limited.. In this study, combined from a big data perspective, we therefore describe a quantitative signal quality assessment pipeline, a stable and general threshold-based QA pipeline that automatically integrates artifact detection and new QA measures to assess continuous resting-state raw EEG data. One simulation dataset and two resting-state EEG datasets from 42 healthy subjects and 983 clinical patients were utilized to calibrate the QA pipeline.. The results demonstrate that (1) the QA indices selected are sensitive: they almost strictly and linearly decrease as the noise level increases; (2) stable, replicable QA thresholds are valid for other experimental and clinical EEG datasets; and (3) use of the QA pipeline on these datasets reveals that high-frequency noises are the most common noises in EEG practice. The QA pipeline is also deployed in the WeBrain cloud platform (https://webrain.uestc.edu.cn/, the Chinese EEG Brain Consortium portal).. These findings suggest that the proposed QA pipeline may be a stable and promising approach for quantitative EEG signal quality assessment in large-scale EEG studies.

摘要

尽管脑电图(EEG)作为一种广泛使用的神经成像技术,具有出色的时间分辨率,但在实际应用中,信号会被伪迹严重污染,从而掩盖了实验中感兴趣的反应。因此,必须确保能够迅速有效地检测伪迹,以便对原始脑电图数据进行定量质量评估(QA)。这种流程对于大规模脑电图研究至关重要。然而,目前的脑电图QA研究仍然有限。在本研究中,我们从大数据的角度出发,描述了一种定量信号质量评估流程,这是一种基于阈值的稳定通用QA流程,它能自动整合伪迹检测和新的QA测量方法,以评估连续的静息态原始脑电图数据。我们使用了一个模拟数据集以及来自42名健康受试者和983名临床患者的两个静息态脑电图数据集来校准QA流程。结果表明:(1)所选的QA指标很敏感:随着噪声水平的增加,它们几乎严格且呈线性下降;(2)稳定、可重复的QA阈值对其他实验和临床脑电图数据集有效;(3)在这些数据集上使用QA流程表明,高频噪声是脑电图实践中最常见的噪声。该QA流程也已部署在WeBrain云平台(https://webrain.uestc.edu.cn/,中国脑电图脑库联盟门户)上。这些发现表明,所提出的QA流程可能是大规模脑电图研究中定量脑电图信号质量评估的一种稳定且有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验