Suppr超能文献

基于脑电图的不同类型信息下脑力工作负荷任务的动态功能连接分析。

EEG Based Dynamic Functional Connectivity Analysis in Mental Workload Tasks With Different Types of Information.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:632-642. doi: 10.1109/TNSRE.2022.3156546. Epub 2022 Mar 21.

Abstract

The accurate evaluation of operators' mental workload in human-machine systems plays an important role in ensuring the correct execution of tasks and the safety of operators. However, the performance of cross-task mental workload evaluation based on physiological metrics remains unsatisfactory. To explore the changes in dynamic functional connectivity properties with varying mental workload in different tasks, four mental workload tasks with different types of information were designed and a newly proposed dynamic brain network analysis method based on EEG microstate was applied in this paper. Six microstate topographies labeled as Microstate A-F were obtained to describe the task-state EEG dynamics, which was highly consistent with previous studies. Dynamic brain network analysis revealed that 15 nodes and 68 pairs of connectivity from the Frontal-Parietal region were sensitive to mental workload in all four tasks, indicating that these nodal metrics had potential to effectively evaluate mental workload in the cross-task scenario. The characteristic path length of Microstate D brain network in both Theta and Alpha bands decreased whereas the global efficiency increased significantly when the mental workload became higher, suggesting that the cognitive control network of brain tended to have higher function integration property under high mental workload state. Furthermore, by using a SVM classifier, an averaged classification accuracy of 95.8% for within-task and 80.3% for cross-task mental workload discrimination were achieved. Results implies that it is feasible to evaluate the cross-task mental workload using the dynamic functional connectivity metrics under specific microstate, which provided a new insight for understanding the neural mechanism of mental workload with different types of information.

摘要

在人机系统中准确评估操作人员的心理负荷对于确保任务的正确执行和操作人员的安全起着重要作用。然而,基于生理指标的跨任务心理负荷评估的性能仍然不尽如人意。为了探索不同任务中不同类型信息的心理负荷变化对动态功能连接特性的影响,本文设计了四个具有不同类型信息的心理负荷任务,并应用了一种新提出的基于 EEG 微状态的动态脑网络分析方法。得到了六个标记为 Microstate A-F 的微状态地形图来描述任务状态 EEG 动态,这与之前的研究高度一致。动态脑网络分析表明,在所有四个任务中,来自额顶区域的 15 个节点和 68 对连接对心理负荷敏感,这表明这些节点指标有可能有效地评估跨任务场景中的心理负荷。当心理负荷增加时,Theta 和 Alpha 频段中 Microstate D 脑网络的特征路径长度减小,而全局效率显著增加,这表明在高心理负荷状态下,大脑的认知控制网络倾向于具有更高的功能整合特性。此外,使用 SVM 分类器,在任务内和跨任务心理负荷判别方面,平均分类准确率分别达到 95.8%和 80.3%。结果表明,使用特定微状态下的动态功能连接指标评估跨任务心理负荷是可行的,这为理解不同类型信息的心理负荷的神经机制提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验