Suppr超能文献

整合多组学分析以探究[具体对象]对高温胁迫响应背后的分子机制。 (原文中“to Investigate the Molecular Mechanisms Underlying the Response of to High-Temperature Stress”部分缺少具体受高温胁迫的对象)

Integrated Multi-Omics Analysis to Investigate the Molecular Mechanisms Underlying the Response of to High-Temperature Stress.

作者信息

Lu Fang, Sun Xin, Dai Xiaodong, Zhang Piqi, Ma Yinpeng, Xu Yafei, Wang Lei, Zhang Jiechi

机构信息

Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China.

Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China.

出版信息

J Fungi (Basel). 2025 Feb 20;11(3):167. doi: 10.3390/jof11030167.

Abstract

High-temperature stress is a key factor that reduces the yields of edible fungi. () is a nutrient-rich edible fungus that is widely cultivated in China. In this study, we analyzed the physiological, transcriptomic, and metabolomic results of (variety "Hei29") under high-temperature stress. Our findings revealed that high temperatures (30 °C and 35 °C) significantly reduced hyphal growth, increased malondialdehyde content and antioxidant enzyme activity, and enhanced the accumulation of secondary metabolites, such as phenolic compounds and flavonoids. A total of 15 candidate genes potentially responsive to high-temperature stress were identified through transcriptomic analysis, including those involved in regulating antioxidant defense, heat shock response, sugar metabolism, amino acid metabolism, and accumulating secondary metabolites. Metabolomic analysis identified three candidate metabolites potentially responsive to high-temperature stress, including kinetin, flavonoids, and caffeic acid, as well as several metabolic pathways, including nucleotide metabolism, ABC transporters, and cofactor biosynthesis. These mechanisms help mitigate oxidative damage to cellular structures and energy deficits caused by elevated temperatures, enabling the fungus to maintain cellular stability, metabolic function, and growth under heat stress. This study is the first to explore the molecular mechanism of in response to high-temperature stress. The results provide valuable insights into the molecular mechanisms of heat stress tolerance in , highlighting potential targets for developing heat-tolerant strains for industrial application.

摘要

高温胁迫是降低食用菌产量的关键因素。()是一种营养丰富的食用菌,在中国广泛种植。在本研究中,我们分析了(品种“Hei29”)在高温胁迫下的生理、转录组和代谢组结果。我们的研究结果表明,高温(30℃和35℃)显著降低了菌丝生长,增加了丙二醛含量和抗氧化酶活性,并促进了次生代谢产物如酚类化合物和黄酮类化合物的积累。通过转录组分析共鉴定出15个可能对高温胁迫有响应的候选基因,包括参与调节抗氧化防御、热休克反应、糖代谢、氨基酸代谢以及积累次生代谢产物的基因。代谢组分析鉴定出三种可能对高温胁迫有响应的候选代谢物,包括激动素、黄酮类化合物和咖啡酸,以及几条代谢途径,包括核苷酸代谢、ABC转运蛋白和辅因子生物合成。这些机制有助于减轻高温对细胞结构造成的氧化损伤和能量不足,使真菌能够在热胁迫下维持细胞稳定性、代谢功能和生长。本研究首次探索了()对高温胁迫的分子机制。研究结果为()耐热性的分子机制提供了有价值的见解,突出了开发工业应用耐热菌株的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7150/11943417/48d747c05cee/jof-11-00167-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验