Suppr超能文献

BentRay-NeRF:用于超声计算机断层扫描中稳健声速成像的弯曲射线神经辐射场

BentRay-NeRF: Bent-Ray Neural Radiance Fields for Robust Speed-of-Sound Imaging in Ultrasound Computed Tomography.

作者信息

Cui Shilong, Wu Qing, Huang Yiming, Dai Haizhao, Zhang Yuyao, Yu Jingyi, Cai Xiran

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2025 May;72(5):612-623. doi: 10.1109/TUFFC.2025.3554223. Epub 2025 May 7.

Abstract

Ultrasound computed tomography (USCT) is a promising technique for breast cancer detection because of its quantitative imaging capability of the speed of sound (SOS) of soft tissues and the fact that malignant breast lesions often have a higher SOS compared to healthy tissues in the human breast. Compared to waveform inversion-based USCT, bent-ray tracing USCT is relatively less computationally expensive, which particularly suits breast cancer screening in a large population. However, SOS image reconstruction using bent-ray tracing in USCT is a highly ill-conditioned problem, making it susceptible to measurement errors. This presents significant challenges in achieving stable and high-quality reconstructions. In this study, we show that using implicit neural representation (INR), the ill-conditioned problem can be well mitigated, and stable reconstruction is achievable. This INR approach uses a multilayer perceptron (MLP) with hash encoding to model the slowness map as a continuous function, to better regularize the inverse problem and has been shown more effective than classical approaches of solely adding regularization terms in the loss function. Thereby, we propose the bent-ray neural radiance fields (BentRay-NeRF) method for SOS image reconstruction to address the aforementioned challenges in classical SOS image reconstruction methods, such as the Gauss-Newton method. In silico and in vitro experiments showed that BentRay-NeRF has remarkably improved performance compared to the classical method in many aspects, including the image quality and the robustness of the inversion to different acquisition settings in the presence of measurement errors.

摘要

超声计算机断层扫描(USCT)是一种很有前景的乳腺癌检测技术,因为它能够对软组织的声速(SOS)进行定量成像,而且乳腺恶性病变的SOS通常比人体乳腺中的健康组织更高。与基于波形反演的USCT相比,弯曲射线追踪USCT的计算成本相对较低,这特别适合在大量人群中进行乳腺癌筛查。然而,在USCT中使用弯曲射线追踪进行SOS图像重建是一个高度病态的问题,容易受到测量误差的影响。这在实现稳定和高质量的重建方面带来了重大挑战。在本研究中,我们表明,使用隐式神经表示(INR),可以很好地缓解病态问题,并实现稳定的重建。这种INR方法使用带有哈希编码的多层感知器(MLP)将慢度图建模为连续函数,以更好地正则化反问题,并且已被证明比仅在损失函数中添加正则化项的经典方法更有效。因此,我们提出了用于SOS图像重建的弯曲射线神经辐射场(BentRay-NeRF)方法,以解决经典SOS图像重建方法(如高斯-牛顿法)中上述的挑战。计算机模拟和体外实验表明,与经典方法相比,BentRay-NeRF在许多方面都有显著提高的性能,包括图像质量以及在存在测量误差的情况下对不同采集设置的反演鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验