Suppr超能文献

识别加巴喷丁治疗酒精使用障碍的反应者:一种探索性机器学习方法。

Identifying responders to gabapentin for the treatment of alcohol use disorder: an exploratory machine learning approach.

作者信息

Ray Lara A, Grodin Erica N, Baskerville Wave-Ananda, Donato Suzanna, Cruz Alondra, Montoya Amanda K

机构信息

Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA 90095, United States.

Brain Research Institute, University of California, Los Angeles, 695 Charles E Young Drive S, Los Angeles, CA 90095, United States.

出版信息

Alcohol Alcohol. 2025 Mar 25;60(3). doi: 10.1093/alcalc/agaf010.

Abstract

BACKGROUND

Gabapentin, an anticonvulsant medication, has been proposed as a treatment for alcohol use disorder (AUD). A multisite study tested gabapentin enacarbil extended-release (GE-XR; 600 mg/twice a day), a prodrug formulation, combined with a computerized behavioral intervention, for AUD. In this multisite trial, the gabapentin GE-XR group did not differ significantly from placebo on the primary outcome of percent of subjects with no heavy drinking days. Despite the null findings, there is considerable interest in using machine learning methods to identify responders to GE-XR. The present study applies interaction tree machine learning methods to identify positive and iatrogenic (i.e. individuals who responded better to placebo than to GE-XR) treatment responders in the trial.

METHODS

Baseline characteristics taken from the multisite trial were examined as potential moderators of treatment response using qualitative interaction trees (QUINT; N = 338; 223 M/115F). QUINT models are an exploratory decision tree approach that iteratively splits the data into leaves based on predictor variables to maximize a specific criterion.

RESULTS

Analyses identified key factors that are associated with the efficacy (or iatrogenic effects) of GE-XR for AUD. Such factors are baseline drinking levels, motivation for change, confidence in their ability to reach drinking goals (i.e. self-efficacy), cognitive impulsivity, and baseline anxiety levels.

CONCLUSION

Baseline drinking levels and anxiety levels may be associated with the protracted withdrawal syndrome, previously implicated in the clinical response to gabapentin. However, these analyses underscore motivation for change and self-efficacy as predictors of clinical response to GE-XR, suggesting these established constructs should receive further attention in gabapentin research and clinical practice. Multiple studies using different machine learning methods are valuable as these novel analytic tools are applied to medication development for AUD.

摘要

背景

加巴喷丁是一种抗惊厥药物,已被提议用于治疗酒精使用障碍(AUD)。一项多中心研究测试了加巴喷丁依那卡比缓释制剂(GE-XR;600毫克/每日两次),一种前体药物配方,联合计算机化行为干预,用于治疗AUD。在这项多中心试验中,加巴喷丁GE-XR组在无重度饮酒天数的受试者百分比这一主要结局上与安慰剂组无显著差异。尽管结果为阴性,但人们对使用机器学习方法来识别对GE-XR有反应者仍有浓厚兴趣。本研究应用交互树机器学习方法来识别试验中的阳性和医源性(即对安慰剂反应比对GE-XR更好的个体)治疗反应者。

方法

使用定性交互树(QUINT;N = 338;223名男性/115名女性)将多中心试验中的基线特征作为治疗反应的潜在调节因素进行检查。QUINT模型是一种探索性决策树方法,它根据预测变量将数据迭代地分割成叶节点,以最大化特定标准。

结果

分析确定了与GE-XR治疗AUD的疗效(或医源性效应)相关的关键因素。这些因素包括基线饮酒水平、改变动机、对实现饮酒目标能力的信心(即自我效能)、认知冲动性和基线焦虑水平。

结论

基线饮酒水平和焦虑水平可能与先前在加巴喷丁临床反应中涉及的迁延性戒断综合征有关。然而,这些分析强调改变动机和自我效能是对GE-XR临床反应的预测因素,表明这些既定概念在加巴喷丁研究和临床实践中应得到进一步关注。随着这些新型分析工具应用于AUD药物开发,使用不同机器学习方法的多项研究很有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fd2/11938997/95a36ad61ebb/agaf010f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验