Wee JunJie, Gong Xue, Tuschmann Wilderich, Xia Kelin
Department of Mathematics, Michigan State University, East Lansing, MI, 48824, USA.
Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore City, 637371, Singapore.
Sci Rep. 2025 Mar 26;15(1):10458. doi: 10.1038/s41598-025-93381-y.
We introduce a cohomology-based Gromov-Hausdorff ultrametric method to analyze 1-dimensional and higher-dimensional (co)homology groups, focusing on loops, voids, and higher-dimensional cavity structures in simplicial complexes, to address typical clustering questions arising in molecular data analysis. The Gromov-Hausdorff distance quantifies the dissimilarity between two metric spaces. In this framework, molecules are represented as simplicial complexes, and their cohomology vector spaces are computed to capture intrinsic topological invariants encoding loop and cavity structures. These vector spaces are equipped with a suitable distance measure, enabling the computation of the Gromov-Hausdorff ultrametric to evaluate structural dissimilarities. We demonstrate the methodology using organic-inorganic halide perovskite (OIHP) structures. The results highlight the effectiveness of this approach in clustering various molecular structures. By incorporating geometric information, our method provides deeper insights compared to traditional persistent homology techniques.
我们引入一种基于上同调的格罗莫夫-豪斯多夫超度量方法,用于分析一维及更高维的(上)同调群,重点关注单纯复形中的环、空洞和高维腔结构,以解决分子数据分析中出现的典型聚类问题。格罗莫夫-豪斯多夫距离量化了两个度量空间之间的差异。在此框架下,分子被表示为单纯复形,并计算其同调向量空间以捕获编码环和腔结构的内在拓扑不变量。这些向量空间配备了合适的距离度量,从而能够计算格罗莫夫-豪斯多夫超度量以评估结构差异。我们使用有机-无机卤化物钙钛矿(OIHP)结构展示了该方法。结果突出了这种方法在聚类各种分子结构方面的有效性。通过纳入几何信息,我们的方法比传统的持久同调技术提供了更深入的见解。