Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA.
J Am Med Inform Assoc. 2012 Nov-Dec;19(6):1066-74. doi: 10.1136/amiajnl-2012-000935. Epub 2012 May 30.
Drug-drug interactions (DDIs) are responsible for many serious adverse events; their detection is crucial for patient safety but is very challenging. Currently, the US Food and Drug Administration and pharmaceutical companies are showing great interest in the development of improved tools for identifying DDIs.
We present a new methodology applicable on a large scale that identifies novel DDIs based on molecular structural similarity to drugs involved in established DDIs. The underlying assumption is that if drug A and drug B interact to produce a specific biological effect, then drugs similar to drug A (or drug B) are likely to interact with drug B (or drug A) to produce the same effect. DrugBank was used as a resource for collecting 9454 established DDIs. The structural similarity of all pairs of drugs in DrugBank was computed to identify DDI candidates.
The methodology was evaluated using as a gold standard the interactions retrieved from the initial DrugBank database. Results demonstrated an overall sensitivity of 0.68, specificity of 0.96, and precision of 0.26. Additionally, the methodology was also evaluated in an independent test using the Micromedex/Drugdex database.
The proposed methodology is simple, efficient, allows the investigation of large numbers of drugs, and helps highlight the etiology of DDI. A database of 58 403 predicted DDIs with structural evidence is provided as an open resource for investigators seeking to analyze DDIs.
药物-药物相互作用(DDI)是许多严重不良事件的原因;检测它们对于患者安全至关重要,但极具挑战性。目前,美国食品和药物管理局(FDA)和制药公司对开发用于识别 DDI 的改进工具表现出极大的兴趣。
我们提出了一种新的适用于大规模应用的方法,该方法基于与已确定的 DDI 中涉及的药物的分子结构相似性来识别新的 DDI。其基本假设是,如果药物 A 和药物 B 相互作用产生特定的生物学效应,那么与药物 A (或药物 B)相似的药物(或药物 B)(或药物 A)很可能与药物 B (或药物 A)相互作用产生相同的效应。DrugBank 被用作收集 9454 个已建立的 DDI 的资源。计算 DrugBank 中所有药物对的结构相似性,以识别 DDI 候选物。
使用初始 DrugBank 数据库中检索到的相互作用作为金标准来评估该方法。结果表明,总体敏感性为 0.68,特异性为 0.96,精度为 0.26。此外,还使用 Micromedex/Drugdex 数据库进行了独立测试评估。
所提出的方法简单、高效,允许研究大量药物,并有助于突出 DDI 的病因。提供了一个包含 58403 个具有结构证据的预测 DDI 的数据库,作为寻求分析 DDI 的研究人员的开放资源。