Suppr超能文献

单细胞RNA测序揭示肺鳞状细胞癌肿瘤微环境中的潜在治疗靶点。

Single-cell RNA sequencing reveals potential therapeutic targets in the tumor microenvironment of lung squamous cell carcinoma.

作者信息

Fan Junda, Chen Yu, Gong Yue, Sun Hongmei, Hou Rui, Dou Xiaoya, Zhang Yanping, Huo Cheng

机构信息

Department of Oncology, 242 Hospital Affiliated to Shenyang Medical College, Shenyang, 110034, China.

Jiamusi Central Hospital, Jiamusi, 154000, China.

出版信息

Sci Rep. 2025 Mar 26;15(1):10374. doi: 10.1038/s41598-025-93916-3.

Abstract

Lung squamous cell carcinoma (LUSC), accounting for 30% of lung cancer cases, lacks adequate research due to limited understanding of its molecular abnormalities. Our study analyzed public LUSC datasets to explore the tumor microenvironment (TME) composition using scRNA-seq from two cohorts. Applying non-negative matrix factorization, we identified unique malignant cell phenotypes, or meta-programs (MPs), based on gene expression patterns. Survival analysis revealed the clinical relevance of these MPs. Findings illuminated a TME landscape enriched with immune cells-CD8 + T, exhausted T, CD4 + T, and naive T cells-and suggested roles for myeloid cells, like cDC1 and pDCs, in LUSC progression. Different MPs highlighted the heterogeneity of malignant cells and their clinical implications. Targeting MP-specific genes may enable personalized therapy, especially for early-stage LUSC. This study offers insights into immune cell function in tumor dynamics, identifies MPs, and paves the way for novel LUSC strategies, enhancing early intervention, personalized treatment, and prognosis, ultimately improving patient outcomes.

摘要

肺鳞状细胞癌(LUSC)占肺癌病例的30%,由于对其分子异常的了解有限,缺乏充分的研究。我们的研究分析了公开的LUSC数据集,使用来自两个队列的单细胞RNA测序(scRNA-seq)来探索肿瘤微环境(TME)的组成。应用非负矩阵分解,我们基于基因表达模式确定了独特的恶性细胞表型或元程序(MPs)。生存分析揭示了这些MPs的临床相关性。研究结果揭示了一个富含免疫细胞——CD8+T细胞、耗竭性T细胞、CD4+T细胞和幼稚T细胞——的TME格局,并提示了髓样细胞,如cDC1和浆细胞样树突状细胞(pDCs)在LUSC进展中的作用。不同的MPs突出了恶性细胞的异质性及其临床意义。靶向MP特异性基因可能实现个性化治疗,尤其是对于早期LUSC。本研究深入了解了免疫细胞在肿瘤动态中的功能,确定了MPs,并为新的LUSC策略铺平了道路,加强了早期干预、个性化治疗和预后,最终改善患者结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f175/11947091/18e66ea56681/41598_2025_93916_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验