用于预测急性心力衰竭患者30天再入院情况的可解释机器学习

Explainable machine learning for predicting 30-day readmission in acute heart failure patients.

作者信息

Zhang Yang, Xiang Tianyu, Wang Yanqing, Shu Tingting, Yin Chengliang, Li Huan, Duan Minjie, Sun Mengyan, Zhao Binyi, Kadier Kaisaierjiang, Xu Qian, Ling Tao, Kong Fanqi, Liu Xiaozhu

机构信息

College of Medical Informatics, Chongqing Medical University, Chongqing, China.

Medical Data Science Academy, Chongqing Medical University, Chongqing, China.

出版信息

iScience. 2024 Jun 15;27(7):110281. doi: 10.1016/j.isci.2024.110281. eCollection 2024 Jul 19.

Abstract

We aimed to develop a machine-learning based predictive model to identify 30-day readmission risk in Acute heart failure (AHF) patients. In this study 2232 patients hospitalized with AHF were included. The variance inflation factor value and 5-fold cross-validation were used to select vital clinical variables. Five machine learning algorithms with good performance were applied to develop models, and the discrimination ability was comprehensively evaluated by sensitivity, specificity, and area under the ROC curve (AUC). Prediction results were illustrated by SHapley Additive exPlanations (SHAP) values. Finally, the XGBoost model performs optimally: the greatest AUC of 0.763 (0.703-0.824), highest sensitivity of 0.660, and high accuracy of 0.709. This study developed an optimal XGBoost model to predict the risk of 30-day unplanned readmission for AHF patients, which showed more significant performance compared with traditional logistic regression (LR) model.

摘要

我们旨在开发一种基于机器学习的预测模型,以识别急性心力衰竭(AHF)患者30天再入院风险。本研究纳入了2232例因AHF住院的患者。使用方差膨胀因子值和5折交叉验证来选择重要的临床变量。应用五种性能良好的机器学习算法来开发模型,并通过敏感性、特异性和ROC曲线下面积(AUC)对鉴别能力进行综合评估。预测结果通过SHapley加法解释(SHAP)值进行说明。最后,XGBoost模型表现最佳:最大AUC为0.763(0.703 - 0.824),最高敏感性为0.660,准确率为0.709。本研究开发了一种最佳的XGBoost模型来预测AHF患者30天非计划再入院风险,与传统逻辑回归(LR)模型相比,该模型表现更为显著。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ef/11261142/ccfcdff7ebe4/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索