Hou Yaqi, Zhang Wei, Hu Jiahua, Gao Feiyu, Zong Xuexue
Shanxi Key Laboratory of Chemical Product Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
Micromachines (Basel). 2025 Feb 28;16(3):298. doi: 10.3390/mi16030298.
In simulations of elastic flow using the lattice Boltzmann method (LBM), the steady-state behavior of the flow at low capillary numbers is typically poor and prone to the formation of bubbles with inhomogeneous lengths. This phenomenon undermines the precise control of heat transfer, mass transfer, and reactions within microchannels and microreactors. This paper establishes an LBM multiphase flow model enhanced by machine learning. The hyperparameters of the machine learning model are optimized using the particle swarm algorithm. In contrast, the non-dominated sorting genetic algorithm (NSGA-II) is incorporated to optimize bubble lengths and stability. This results in a coupled multiphase flow numerical simulation model that integrates LBM, machine learning, and the particle swarm algorithm. Using this model, we investigate the influence of elastic flow parameters on bubble length and stability in a T-shaped microchannel. The simulation results demonstrate that the proposed LBM multiphase flow model can effectively predict bubble elongation rates under complex conditions. Furthermore, multi-objective optimization determines the optimal gas-liquid two-phase inlet flow rate relationship, significantly mitigating elastic flow instability at low capillary numbers. This approach enhances the controllability of the elastic flow process and improves the efficiency of mass and heat transfer.
在使用格子玻尔兹曼方法(LBM)进行弹性流动模拟时,低毛细管数下流动的稳态行为通常较差,并且容易形成长度不均匀的气泡。这种现象破坏了微通道和微反应器内传热、传质和反应的精确控制。本文建立了一种通过机器学习增强的LBM多相流模型。使用粒子群算法对机器学习模型的超参数进行优化。相比之下,引入非支配排序遗传算法(NSGA-II)来优化气泡长度和稳定性。这产生了一个集成了LBM、机器学习和粒子群算法的耦合多相流数值模拟模型。使用该模型,我们研究了弹性流动参数对T形微通道中气泡长度和稳定性的影响。模拟结果表明,所提出的LBM多相流模型能够有效地预测复杂条件下的气泡伸长率。此外,多目标优化确定了最佳气液两相入口流速关系,显著减轻了低毛细管数下的弹性流动不稳定性。这种方法提高了弹性流动过程的可控性,并提高了传质和传热效率。