Suppr超能文献

通过机器学习寻找孔蛋白通透性与最低抑菌浓度之间的相关性:通往关键分子描述符的一条有前景的途径。

Seeking Correlation Among Porin Permeabilities and Minimum Inhibitory Concentrations Through Machine Learning: A Promising Route to the Essential Molecular Descriptors.

作者信息

Boi Sara, Puxeddu Silvia, Delogu Ilenia, Farci Domenica, Piano Dario, Manzin Aldo, Ceccarelli Matteo, Angius Fabrizio, Scorciapino Mariano Andrea, Milenkovic Stefan

机构信息

Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy.

Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy.

出版信息

Molecules. 2025 Mar 9;30(6):1224. doi: 10.3390/molecules30061224.

Abstract

Developing effective antibiotics against Gram-negative bacteria remains challenging due to their protective outer membrane. With this study, we investigated the relationship between antibiotic permeation through the OmpF porin of and antimicrobial efficacy. We measured the relative permeability coefficients (RPCs) through the bacterial porin by liposome swelling assays, including non-antibacterial molecules, and the minimum inhibitory concentrations (MICs) against . We developed a machine learning (ML) approach by combining classification and regression models to correlate these data sets. Our strategy allowed us to quantify the negative correlation between RPC and MIC values, clearly indicating that increased permeability through OmpF generally leads to improved antimicrobial activity. Moreover, the correlation was remarkable only for compounds with significant permeability coefficients. Conversely, when permeation ability is low, other factors play the most significant role in antimicrobial potency. Importantly, the proposed ML-based approach was set by exploiting the available seminal information from previous investigations in order to keep the number of molecular descriptors to the minimum for greater interpretability. This provided valuable insights into the complex interplay between different molecular properties in defining the overall outer membrane permeation and, consequently, the antimicrobial efficacy. From a practical perspective, the presented approach does not aim at identifying the "golden rule" for boosting antibiotic potency. The automated protocol presented here could be used to inspect, in silico, many alternatives of a given molecular structure, with the output being the list of the best candidates to be then synthesized and tested. This could be a valuable in silico tool for researchers in both academia and industry to rapidly evaluate novel potential compounds and reduce costs and time during the early drug discovery stage.

摘要

由于革兰氏阴性菌具有保护性外膜,开发针对它们的有效抗生素仍然具有挑战性。在这项研究中,我们研究了抗生素通过OmpF孔蛋白的渗透与抗菌效果之间的关系。我们通过脂质体膨胀试验测量了包括非抗菌分子在内的物质通过细菌孔蛋白的相对渗透系数(RPC),以及对[具体细菌名称未给出]的最低抑菌浓度(MIC)。我们通过结合分类和回归模型开发了一种机器学习(ML)方法来关联这些数据集。我们的策略使我们能够量化RPC和MIC值之间的负相关,清楚地表明通过OmpF的渗透性增加通常会导致抗菌活性提高。此外,这种相关性仅对于具有显著渗透系数的化合物才显著。相反,当渗透能力较低时,其他因素在抗菌效力中起最重要的作用。重要的是,所提出的基于ML的方法是通过利用先前研究中可用的开创性信息来设定的,以便将分子描述符的数量保持在最低水平以提高可解释性。这为不同分子特性在定义整体外膜渗透以及因此抗菌效果方面的复杂相互作用提供了有价值的见解。从实际角度来看,所提出的方法并非旨在确定提高抗生素效力的“黄金法则”。这里提出的自动化方案可用于在计算机上检查给定分子结构的许多替代方案,输出结果是随后要合成和测试的最佳候选物列表。这对于学术界和工业界的研究人员来说可能是一个有价值的计算机工具,可用于在早期药物发现阶段快速评估新型潜在化合物并降低成本和时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9875/11944608/7758a14ad6cf/molecules-30-01224-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验