Suppr超能文献

基于机器学习的韩国2型糖尿病患者糖尿病肾病预测模型

A Machine Learning-Based Prediction Model for Diabetic Kidney Disease in Korean Patients with Type 2 Diabetes Mellitus.

作者信息

Lee Kyung Ae, Kim Jong Seung, Kim Yu Ji, Goak In Sun, Jin Heung Yong, Park Seungyong, Kang Hyejin, Park Tae Sun

机构信息

Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea.

Department of Otorhinolaryngology-Head and Neck Surgery, Department of Medical Informatics, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea.

出版信息

J Clin Med. 2025 Mar 18;14(6):2065. doi: 10.3390/jcm14062065.

Abstract

Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease and a leading contributor to morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). However, predictive models for DKD onset in Korean patients with T2DM remain underexplored. This study aimed to develop and validate a machine learning (ML)-based DKD prediction model for this population. This retrospective study utilized electronic health records from six secondary or tertiary hospitals in Korea. The Jeonbuk National University Hospital cohort was used for model development (ratio training: test data, 8:2), whereas datasets from five other hospitals supported external validation. We employed multiple ML algorithms, including lasso, ridge, and elastic net regression; random forest; XGBoost; support vector machines; and neural networks. The model incorporated demographic variables, comorbidities, medications, and laboratory test results. Among 5120 patients with T2DM, 1361 (26.6%) developed DKD. In the development cohort, XGBoost achieved the highest predictive performance (AUC: 0.8099), followed by random forest and logistic regression models (AUCs: 0.7977-0.8019). External validation confirmed the model's robustness with high AUCs (XGBoost: 0.8113, logistic regression models: 0.8228-0.8271). Key predictive factors included age; baseline estimated glomerular filtration rate; and creatinine, hemoglobin, and hemoglobin A1c levels. Our findings highlight the potential of ML-based approaches in predicting DKD in patients with T2DM. The superior performance of XGBoost and logistic regression models underscores their clinical utility. External validation supports the model's generalizability. This model is a valuable tool for the early DKD risk assessment of Korean patients with T2DM.

摘要

糖尿病肾病(DKD)是终末期肾病的主要病因,也是2型糖尿病(T2DM)患者发病和死亡的主要原因。然而,韩国T2DM患者DKD发病的预测模型仍未得到充分研究。本研究旨在为该人群开发并验证基于机器学习(ML)的DKD预测模型。这项回顾性研究利用了韩国六家二级或三级医院的电子健康记录。全北国立大学医院队列用于模型开发(训练数据与测试数据的比例为8:2),而其他五家医院的数据集则用于外部验证。我们采用了多种ML算法,包括套索回归、岭回归和弹性网络回归;随机森林;XGBoost;支持向量机;以及神经网络。该模型纳入了人口统计学变量、合并症、药物治疗和实验室检查结果。在5120例T2DM患者中,1361例(26.6%)发生了DKD。在开发队列中,XGBoost的预测性能最高(AUC:0.8099),其次是随机森林和逻辑回归模型(AUC:0.7977 - 0.8019)。外部验证证实了该模型具有较高的AUC值,具有稳健性(XGBoost:0.8113,逻辑回归模型:0.8228 - 0.8271)。关键预测因素包括年龄;基线估计肾小球滤过率;以及肌酐、血红蛋白和糖化血红蛋白水平。我们的研究结果凸显了基于ML的方法在预测T2DM患者DKD方面的潜力。XGBoost和逻辑回归模型的卓越性能强调了它们的临床实用性。外部验证支持该模型的可推广性。该模型是韩国T2DM患者早期DKD风险评估的宝贵工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31cd/11942948/6a8a50a0d4a1/jcm-14-02065-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验