Abdullayev Orkhan, Garay-Ruiz Diego, Bori-Bru Berta, Bo Carles
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans, 16, Tarragona 43007, Spain.
Department of Physical and Inorganic Chemistry, University Rovira i Virgili (URV), Marcel·lí Domingo s/n, Tarragona 43007, Spain.
ACS Catal. 2025 Mar 6;15(6):4739-4745. doi: 10.1021/acscatal.5c00348. eCollection 2025 Mar 21.
Computational chemistry has become a fundamental part of the understanding and optimization of catalytic processes. Among these, the characterization of homogeneous organometallic catalysts, combining an active transition metal atom and set of ligands, is one of the main fields of application of these kinds of studies. More recently, microkinetic studies have been employed to bridge the gap between experimental measurements such as conversion or selectivity and the Gibbs free energies gathered by computations. In this work, we have developed an automated framework (MicroKatc) for microkinetic analysis, to tackle the yet understudied effect of ligand exchange processes that modify the nature of the catalytic scaffold . We report the application of such a framework to the rhodium-catalyzed hydroformylation of ethylene, confirming the acceleration of the reaction as trimethylphosphine (PMe) displaces the carbonyl ligands in the catalyst by means of simulations at variable phosphine concentrations, as well as the determination of the degree of rate control (DRC) and apparent activation energies throughout the catalytic process.
计算化学已成为理解和优化催化过程的一个基本组成部分。其中,结合活性过渡金属原子和一组配体的均相有机金属催化剂的表征是这类研究的主要应用领域之一。最近,微动力学研究已被用于弥合诸如转化率或选择性等实验测量与通过计算获得的吉布斯自由能之间的差距。在这项工作中,我们开发了一个用于微动力学分析的自动化框架(MicroKatc),以解决尚未充分研究的配体交换过程对催化支架性质的影响。我们报告了该框架在铑催化乙烯氢甲酰化反应中的应用,通过在可变膦浓度下的模拟证实了三甲基膦(PMe)取代催化剂中羰基配体时反应的加速,以及在整个催化过程中速率控制程度(DRC)和表观活化能的测定。