Yuan Wenhao, Xiong Zaili, Zeng Meirong, Zhou Zhongyue, Wang Zhandong, Yang Jiuzhong, Zhao Long, Pan Yang, Qi Fei
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
J Phys Chem A. 2025 Jan 16;129(2):423-438. doi: 10.1021/acs.jpca.4c06404. Epub 2025 Jan 4.
Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics. Then, opportunities and challenges are presented based on recent research progress in gas-solid catalysis and combustion chemistry. For experimental approaches, the importance of ideal catalytic reactors, structured catalysts, and precise elementary rate measurements is emphasized. Additionally, integrating spatiotemporally resolved gas-phase diagnostics with surface-adsorbed species characterization methods offers new opportunities for gaining deeper insights into gas-surface reactions. In microkinetic modeling, a hybrid rate parameter evaluation approach that combines first-principles calculations with semiempirical methods, followed by automated mechanism generation and data-driven optimization, opens new avenues for efficiently constructing surface mechanisms. Furthermore, extending microkinetic modeling beyond mean-field approximations allows simulations under realistic catalyst operating conditions. Finally, the critical role of gas-phase mechanisms and comprehensive microkinetic modeling analyses in advancing our fundamental understanding of gas-solid catalytic processes is highlighted.
多相催化的微观动力学建模是连接原子尺度第一性原理计算和宏观工业反应器模拟的有效工具。对微观动力学机制的基本理解依赖于实验和理论研究的结合。本综述介绍了应用于气固催化动力学的实验和微观动力学建模方法的最新进展。然后,基于气固催化和燃烧化学的最新研究进展,阐述了机遇和挑战。对于实验方法,强调了理想催化反应器、结构化催化剂和精确基元速率测量的重要性。此外,将时空分辨气相诊断与表面吸附物种表征方法相结合,为深入了解气-固反应提供了新机会。在微观动力学建模中,一种将第一性原理计算与半经验方法相结合,随后进行自动机理生成和数据驱动优化的混合速率参数评估方法,为高效构建表面机理开辟了新途径。此外,将微观动力学建模扩展到平均场近似之外,可以在实际催化剂操作条件下进行模拟。最后,强调了气相机理和综合微观动力学建模分析在深化我们对气固催化过程基本理解方面的关键作用。