Liu Jiali, Rama Raquel J, Cordero-Lanzac Tomás, Safy Mohamed E A, Franke Robert, Nova Ainara
Evonik Oxeno GmbH & Co. KG, Paul-Baumann-Str. 1, Marl 45772, Germany.
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum 44780, Germany.
ACS Catal. 2025 Mar 12;15(6):5113-5122. doi: 10.1021/acscatal.4c06818. eCollection 2025 Mar 21.
Methanol can be used as a surrogate molecule for CO and H in the synthesis of a large variety of chemicals. In this work, the mechanism for the methanol-to-syngas reaction catalyzed by a Ru-PNP complex was studied using density functional theory. In the proposed mechanism, the CO is directly released from the methyl formate intermediate, forming a Ru-OCH species. The preference for this pathway compared to others proposed in literature was supported by a microkinetic model constructed from the computed Gibbs free energies and coupled to a liquid-vapor batch reactor describing the gas phase composition. After including energy corrections of ≤6 kcal mol to three organic intermediates and CO, our model could reproduce the experimental CO and H turnover numbers over the time previously reported. Further, this model was used to evaluate the influence of solvent polarity and methanol concentration on the formation of products and catalyst resting states. These results suggest that in methanol, CO formation is limited by the organic reaction thermodynamics, whereas in toluene, it is limited by Ru-CO formation. Overall, this work shows the potential of microkinetic models to benchmark reaction mechanisms and computational methods and provide the relevant information required for catalyst design.
在多种化学品的合成中,甲醇可作为一氧化碳(CO)和氢(H)的替代分子。在本工作中,使用密度泛函理论研究了Ru-PNP配合物催化甲醇制合成气反应的机理。在所提出的机理中,CO直接从甲酸甲酯中间体释放,形成Ru-OCH物种。通过由计算得到的吉布斯自由能构建并与描述气相组成的液-气间歇反应器耦合的微观动力学模型,支持了该途径相对于文献中提出的其他途径的偏好性。在对三种有机中间体和CO进行≤6千卡/摩尔的能量校正后,我们的模型能够重现先前报道的实验中随时间变化的CO和H的周转数。此外,该模型用于评估溶剂极性和甲醇浓度对产物形成和催化剂静止状态的影响。这些结果表明,在甲醇中,CO的形成受有机反应热力学限制,而在甲苯中,它受Ru-CO形成的限制。总体而言,本工作展示了微观动力学模型在基准反应机理和计算方法以及提供催化剂设计所需相关信息方面的潜力。