Suppr超能文献

用于生理数据分析的多元回归:多重共线性问题。

Multiple regression for physiological data analysis: the problem of multicollinearity.

作者信息

Slinker B K, Glantz S A

出版信息

Am J Physiol. 1985 Jul;249(1 Pt 2):R1-12. doi: 10.1152/ajpregu.1985.249.1.R1.

Abstract

Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

摘要

多元线性回归是一种强大的统计工具,其中几个预测变量与一个响应变量相关,可用于深入定量了解复杂的体内生理系统。为了使这些见解正确,所有预测变量必须不相关。然而,在许多生理实验中,预测变量无法精确控制,因此会并行变化(即它们高度相关)。关于响应存在信息冗余,这种情况称为多重共线性,会导致在估计回归方程参数时出现数值问题;参数的大小或符号往往不正确,或者标准误差很大。虽然通过良好的实验设计可以避免多重共线性,但并非所有有趣的生理问题在研究时都不会遇到多重共线性。在这些情况下,人们提出了各种临时程序来减轻多重共线性。虽然其中许多程序存在争议,但它们有助于将多元线性回归应用于一些生理问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验