Suppr超能文献

利用癌症衍生外泌体的拉曼光谱和机器学习进行癌细胞系分类

Cancer Cell Line Classification Using Raman Spectroscopy of Cancer-Derived Exosomes and Machine Learning.

作者信息

Villazon Jorge, Dela Cruz Nathaniel, Shi Lingyan

机构信息

Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States.

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

出版信息

Anal Chem. 2025 Apr 8;97(13):7289-7298. doi: 10.1021/acs.analchem.4c06966. Epub 2025 Mar 27.

Abstract

Liquid biopsies are an emerging, noninvasive tool for cancer diagnostics, utilizing biological fluids for molecular profiling. Nevertheless, the current methods often lack the sensitivity and specificity necessary for early detection and real-time monitoring. This work explores an advanced approach to improving liquid biopsy techniques through machine learning analysis of the Raman spectra measured to classify distinct exosome solutions by their cancer origin. This was accomplished by conducting principal component analysis (PCA) of the Raman spectra of exosomes from three cancer cell lines (COLO205, A375, and LNCaP) to extract chemically significant features. This reduced set of features was then utilized to train a linear discriminant analysis (LDA) classifier to predict the source of the exosomes. Furthermore, we investigated differences in the lipid composition in these exosomes by their spectra. This spectral similarity analysis revealed differences in lipid profiles between the different cancer cell lines as well as identified the predominant lipids across all exosomes. Our PCA-LDA framework achieved 93.3% overall accuracy and F1 scores of 98.2%, 91.1%, and 91.0% for COLO205, A375, and LNCaP, respectively. Our results from spectral similarity analysis were also shown to support previous findings of lipid dynamics due to cancer pathology and pertaining to exosome function and structure. These findings underscore the benefits of enhancing Raman spectroscopy analysis with machine learning, laying the groundwork for the development of early noninvasive cancer diagnostics and personalized treatment strategies. This work potentially establishes the foundation for refining the classification model and optimizing exosome extraction and detection from clinical samples for clinical translation.

摘要

液体活检是一种新兴的非侵入性癌症诊断工具,利用生物体液进行分子分析。然而,目前的方法往往缺乏早期检测和实时监测所需的灵敏度和特异性。这项工作探索了一种先进的方法,通过对测量的拉曼光谱进行机器学习分析来改进液体活检技术,以根据癌症起源对不同的外泌体溶液进行分类。这是通过对来自三种癌细胞系(COLO205、A375和LNCaP)的外泌体的拉曼光谱进行主成分分析(PCA)来提取化学上有意义的特征来实现的。然后利用这组减少的特征来训练线性判别分析(LDA)分类器,以预测外泌体的来源。此外,我们通过光谱研究了这些外泌体中脂质组成的差异。这种光谱相似性分析揭示了不同癌细胞系之间脂质谱的差异,并确定了所有外泌体中的主要脂质。我们的PCA-LDA框架总体准确率达到93.3%,COLO205、A375和LNCaP的F1分数分别为98.2%、91.1%和91.0%。我们的光谱相似性分析结果也被证明支持先前关于癌症病理导致的脂质动力学以及与外泌体功能和结构相关的研究结果。这些发现强调了通过机器学习增强拉曼光谱分析的好处,为早期非侵入性癌症诊断和个性化治疗策略的发展奠定了基础。这项工作有可能为完善分类模型以及优化从临床样本中提取和检测外泌体以实现临床转化奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec2f/11983372/2173ebc17a95/ac4c06966_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验