Suppr超能文献

基于人工智能的血浆外泌体无标记 SERS 分析策略用于早期肺癌检测。

Artificial intelligence-based plasma exosome label-free SERS profiling strategy for early lung cancer detection.

机构信息

School of Mechanical, Electrical & Information Engineering, PuTian University, PuTian, Fujian, 351100, China.

Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China.

出版信息

Anal Bioanal Chem. 2024 Sep;416(23):5089-5096. doi: 10.1007/s00216-024-05445-z. Epub 2024 Jul 17.

Abstract

As a lung cancer biomarker, exosomes were utilized for in vitro diagnosis to overcome the lack of sensitivity of conventional imaging and the potential harm caused by tissue biopsy. However, given the inherent heterogeneity of exosomes, the challenge of accurately and reliably recognizing subtle differences in the composition of exosomes from clinical samples remains significant. Herein, we report an artificial intelligence-assisted surface-enhanced Raman spectroscopy (SERS) strategy for label-free profiling of plasma exosomes for accurate diagnosis of early-stage lung cancer. Specifically, we build a deep learning model using exosome spectral data from lung cancer cell lines and normal cell lines. Then, we extracted the features of cellular exosomes by training a convolutional neural network (CNN) model on the spectral data of cellular exosomes and used them as inputs to a support vector machine (SVM) model. Eventually, the spectral features of plasma exosomes were combined to effectively distinguish adenocarcinoma in situ (AIS) from healthy controls (HC). Notably, the approach demonstrated significant performance in distinguishing AIS from HC samples, with an area under the curve (AUC) of 0.84, sensitivity of 83.3%, and specificity of 83.3%. Together, the results demonstrate the utility of exosomes as a biomarker for the early diagnosis of lung cancer and provide a new approach to prescreening techniques for lung cancer.

摘要

作为一种肺癌生物标志物,外泌体被用于体外诊断,以克服传统成像的敏感性不足和组织活检可能带来的潜在危害。然而,鉴于外泌体固有的异质性,准确可靠地识别临床样本中外泌体组成的细微差异仍然是一个重大挑战。在此,我们报告了一种人工智能辅助的表面增强拉曼光谱(SERS)策略,用于无标记分析血浆外泌体,以实现早期肺癌的准确诊断。具体来说,我们使用来自肺癌细胞系和正常细胞系的外泌体光谱数据构建了一个深度学习模型。然后,我们通过在细胞外泌体的光谱数据上训练卷积神经网络(CNN)模型来提取细胞外泌体的特征,并将其作为支持向量机(SVM)模型的输入。最终,将血浆外泌体的光谱特征结合起来,有效地将原位腺癌(AIS)与健康对照(HC)区分开来。值得注意的是,该方法在区分 AIS 和 HC 样本方面表现出显著的性能,曲线下面积(AUC)为 0.84,灵敏度为 83.3%,特异性为 83.3%。总之,这些结果证明了外泌体作为肺癌早期诊断生物标志物的效用,并为肺癌的筛查技术提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验