Kim Seungyeon, Choi Ho Kwang, Song Young-Seok, Seo Min-Young, Lee Hyunjung, Bae Sukang, Moon Byung Joon, Lee Seoung-Ki, Lee Sang Hyun, Kim Tae-Wook
Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea.
Adv Mater. 2025 Jun;37(24):e2501632. doi: 10.1002/adma.202501632. Epub 2025 Mar 27.
Scalable and cost-effective fabrication of conductive films on substrates with complex geometries is crucial for industrial applications in electronics. Herein, an ultrasonic-driven omni-directional and selective assembly technique is introduced for the uniform deposition of 2D single-crystalline copper nanosheets (Cu NS) onto various substrates. This method leverages cavitation-induced forces to propel Cu NS onto hydrophilic surfaces, enabling the formation of monolayer films with largely monolayer films with some degree of nanosheet overlap. The assembly process is influenced by solvent polarity, nanosheet concentration, and ultrasonic parameters, with non-polar solvents significantly enhancing Cu NS adsorption onto hydrophilic substrates. Furthermore, selective assembly is achieved by patterning hydrophobic and hydrophilic regions on the substrate, ensuring precise localization of Cu NS films. The practical potential of this approach is demonstrated by fabricating a Cu NS-coated capillary tube heater, which exhibits excellent heating performance at low operating voltages. This ultrasonic-driven and selective assembly method offers a scalable and versatile solution for producing conductive films with tailored geometries, unlocking new possibilities for applications in flexible electronics, energy storage, and wearable devices with complex structural requirements.
在具有复杂几何形状的基板上可扩展且经济高效地制造导电薄膜对于电子工业应用至关重要。在此,引入了一种超声驱动的全向选择性组装技术,用于将二维单晶铜纳米片(Cu NS)均匀沉积到各种基板上。该方法利用空化诱导力将Cu NS推进到亲水性表面上,从而形成具有一定程度纳米片重叠的单层薄膜。组装过程受溶剂极性、纳米片浓度和超声参数的影响,非极性溶剂显著增强了Cu NS在亲水性基板上的吸附。此外,通过在基板上对疏水和亲水区域进行图案化实现选择性组装,确保了Cu NS薄膜的精确定位。通过制造涂覆有Cu NS的毛细管加热器展示了这种方法的实际潜力,该加热器在低工作电压下表现出优异的加热性能。这种超声驱动的选择性组装方法为生产具有定制几何形状的导电薄膜提供了一种可扩展且通用的解决方案,为具有复杂结构要求的柔性电子、能量存储和可穿戴设备的应用开辟了新的可能性。