Suppr超能文献

室温可固化的基于铜纳米线的透明加热器。

Room Temperature Curable Copper Nanowire-Based Transparent Heater.

作者信息

Kumar Darbha V Ravi, Koshy Aarju Mathew, Sharma Neha, Thomas Neethu, Swaminathan Parasuraman

机构信息

Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu 641 112, India.

Electronic Materials and Thin Films Lab, Department of Metallurgical and Materials Engineering, IIT Madras, Chennai, Tamil Nadu 600 036, India.

出版信息

ACS Omega. 2023 Jun 5;8(23):21107-21112. doi: 10.1021/acsomega.3c02048. eCollection 2023 Jun 13.

Abstract

Copper nanowires (Cu NWs) are a promising alternative to silver NWs to develop transparent conducting films (TCFs) due to their comparable electrical conductivity and relative abundance. Postsynthetic modifications of the ink and high-temperature postannealing processes for obtaining conducting films are significant challenges that need to be addressed before commercial deployment of these materials. In this work, we have developed an annealing-free (room temperature curable) TCF with Cu NW ink that requires minimal postsynthetic modifications. Organic acid pretreated Cu NW ink is used for spin-coating to obtain a TCF with a sheet resistance of 9.4 Ω/sq. and optical transparency of 67.4% at 550 nm. For oxidation protection, the Cu NW TCF is encapsulated with polydimethylsiloxane (PDMS). The encapsulated film is tested as a transparent heater at various voltages and shows good repeatability. These results demonstrate the potential of Cu NW-based TCFs as a replacement for Ag-NW based TCFs for a variety of optoelectronic applications, such as transparent heaters, touch screens, and photovoltaics.

摘要

由于铜纳米线(Cu NWs)具有可比的导电性和相对丰富的储量,它们是开发透明导电薄膜(TCFs)时银纳米线的一种有前景的替代材料。在商业应用这些材料之前,对油墨进行合成后修饰以及获得导电薄膜的高温后退火工艺是需要解决的重大挑战。在这项工作中,我们用Cu NW油墨开发了一种无需退火(室温固化)的TCF,其所需的合成后修饰极少。经有机酸预处理的Cu NW油墨用于旋涂,以获得在550nm处方阻为9.4Ω/sq且光学透明度为67.4%的TCF。为了防止氧化,用聚二甲基硅氧烷(PDMS)封装Cu NW TCF。封装后的薄膜在不同电压下作为透明加热器进行测试,并显示出良好的重复性。这些结果证明了基于Cu NW的TCF在各种光电子应用(如透明加热器、触摸屏和光伏)中替代基于Ag-NW的TCF的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c418/10269267/81497296eebc/ao3c02048_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验