Inyang Etido P, Aouami A E L, Ali N, Endut R, Ali N R, Aljunid S A
Department of Physics, National Open University of Nigeria, Jabi-Abuja, Nigeria.
Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia.
Sci Rep. 2025 Mar 27;15(1):10565. doi: 10.1038/s41598-024-78969-0.
This study utilizes the Nikiforov-Uvarov method to solve the Schrödinger equation for the class of inversely quadratic Yukawa potential (CIQYP), deriving both the energy equation and the normalized wave function. Shannon entropy and Fisher information in both position and momentum spaces are analyzed for low-energy states using the wave function. The Bialynicki-Birula-Mycielski and Stam-Cramer-Rao inequalities are satisfied for the Shannon and Fisher information entropies, illustrating the complementary uncertainties inherent in position and momentum in quantum mechanics. The study underscores the interplay between position and momentum Fisher entropies, reinforcing the Heisenberg uncertainty principle, which imposes limits on the precise simultaneous measurement of conjugate variables. Eigenvalues of the CIQYP for three diatomic molecules (N₂, O₂, and NO) are obtained using their respective data, revealing that the bound state energy spectra of these diatomic molecules increase as both the principal quantum number and angular momentum quantum number rise. Expectation values were numerically determined, and the potential model simplifies to the Kratzer potential under specific boundary conditions, thereby ensuring analytical accuracy. The energy spectra of diatomic molecules such as I₂ and CO are examined, showing that for a fixed principal quantum number, the energy spectrum increases with increasing angular momentum quantum number, in very good agreement with previously obtained results using different analytical methods.
本研究利用尼基福罗夫 - 乌瓦罗夫方法求解逆二次汤川势(CIQYP)类的薛定谔方程,推导出能量方程和归一化波函数。利用该波函数分析了低能态下位置和动量空间中的香农熵和费希尔信息。香农熵和费希尔信息熵满足比亚林斯基 - 比鲁拉 - 米采尔斯基不等式和斯坦姆 - 克拉默 - 拉奥不等式,说明了量子力学中位置和动量固有的互补不确定性。该研究强调了位置和动量费希尔熵之间的相互作用,强化了海森堡不确定性原理,该原理对共轭变量的精确同时测量施加了限制。利用三种双原子分子(N₂、O₂和NO)各自的数据获得了CIQYP的本征值,结果表明这些双原子分子的束缚态能谱随着主量子数和角动量量子数的增加而增加。通过数值确定了期望值,并且该势模型在特定边界条件下简化为克拉策尔势,从而确保了分析的准确性。研究了诸如I₂和CO等双原子分子的能谱,结果表明对于固定的主量子数,能谱随着角动量量子数的增加而增加,这与先前使用不同分析方法获得的结果非常吻合。