Suppr超能文献

具有闭环控制的随机场微波辅助药物冻干

Randomized-field microwave-assisted pharmaceutical lyophilization with closed-loop control.

作者信息

Alexeenko Alina A, Darwish Ahmad, Strongrich Drew, Kazarin Petr, Patil Chanakya, Tower Cole W, Wheeler Isaac S, Munson Eric, Zhou Qi, Narsimhan Vivek, Yoon Kyu, Nail Steven L, Cofer Anthony, Stanbro Justin, Renawala Harshil, Roth Daniel, DeMarco Francis, Griffiths Justin, Peroulis Dimitrios

机构信息

School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, 47907, USA.

Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

Sci Rep. 2025 Mar 27;15(1):10536. doi: 10.1038/s41598-025-91642-4.

Abstract

The current lyophilization technology for biopharmaceuticals and vaccine products is capital and energy-intensive, largely due to the use of indirect, conductive heat transfer. The heat removal and input in freezing, primary drying, and secondary drying are via contact between the product and shelves cooled or heated by a circulating working fluid such as silicone oil. This is slow, inefficient, and leads to non-uniform freezing and drying, especially in large-scale production systems. To address the current throughput limitations of conventional lyophilization, this collaborative project by Purdue University, Merck and IMA Life develops the next generation of tunable randomized-field microwave lyophilization system demonstrating significant acceleration over conventional freeze-drying processes. The system uses a microwave source delivering electromagnetic energy to the lyophilization chamber at frequencies between 8 GHz and 18 GHz at power levels below 400 W and mechanical stirrers for field randomization to achieve uniform heating. The frequency range is selected due to its greater efficiency for heating ice relative to traditional industrial microwave frequencies of 915 MHz and 2.45 GHz. During operation, temperature is measured directly using optical sensors, providing robust real-time product data. Closed-loop control algorithms enable direct control of the product temperature throughout the drying process, ensuring the material is dried at an optimal rate. The results of quasi-Random Field (qRF) microwave drying for several benchmark formulations, including an attenuated live virus vaccine, are presented and compared with the corresponding conventional lyophilization processes. A model for the product temperature and primary drying time is developed and validated against experimental cases.

摘要

目前用于生物制药和疫苗产品的冻干技术既耗费资金又消耗能源,这主要是由于使用了间接的传导热传递方式。在冷冻、一次干燥和二次干燥过程中,热量的移除和输入是通过产品与由循环工作流体(如硅油)冷却或加热的搁板之间的接触来实现的。这种方式缓慢、低效,并且会导致冷冻和干燥不均匀,尤其是在大规模生产系统中。为了解决传统冻干技术目前的产量限制问题,普渡大学、默克公司和IMA Life公司开展了这个合作项目,开发下一代可调随机场微波冻干系统,该系统相较于传统冷冻干燥工艺有显著的加速效果。该系统使用一个微波源,以低于400瓦的功率水平在8吉赫兹至18吉赫兹的频率下向冻干腔输送电磁能量,并使用机械搅拌器使场随机化以实现均匀加热。选择这个频率范围是因为相对于传统工业微波频率915兆赫兹和2.45吉赫兹,它在加热冰方面效率更高。在运行过程中,使用光学传感器直接测量温度,提供可靠的实时产品数据。闭环控制算法能够在整个干燥过程中直接控制产品温度,确保物料以最佳速率干燥。文中展示了几种基准配方(包括一种减毒活病毒疫苗)的准随机场(qRF)微波干燥结果,并与相应的传统冻干工艺进行了比较。还开发了一个产品温度和一次干燥时间的模型,并根据实验案例进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e2b/11950371/5f9953296ae0/41598_2025_91642_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验