Suppr超能文献

肌少症对轻度急性缺血性脑卒中患者预后的影响:一项前瞻性队列研究。

The effect of sarcopenia on prognosis in patients with mild acute ischemic stroke: a prospective cohort study.

作者信息

Chen Rui, Liu Zhuyun, Liao Ruotong, Liang Hao, Hu Caixia, Zhang Xiaopei, Chen Jiehan, Xiao Hui, Ye Junhua, Guo Jianwen, Wei Lin

机构信息

Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.

Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China.

出版信息

BMC Neurol. 2025 Mar 27;25(1):130. doi: 10.1186/s12883-025-04136-1.

Abstract

BACKGROUND

Ischemic stroke is a common chronic disease worldwide and is correlated with a high disability rate. Sarcopenia is considered a key factor in the disablement process. Limited evidence of sarcopenia in acute ischemic stroke is available. The aim of this study was to investigate the effect of sarcopenia on the prognosis of patients with acute ischemic stroke.

METHODS

A prospective cohort study was conducted and included patients who were diagnosed with acute ischemic stroke between August 2020 and May 2021. A modified Poisson regression was applied to determine the relative risk (RR) for the change in modified Rankin Scale (mRS) score and allow adjustment for confounders. The modified Poisson regression was used to identify associations between sarcopenia, and multiple linear regression analyses were used to assess the effect of sarcopenia on the Barthel Index (BI) and stroke-specific quality of life (SSQOL). The generalized linear mixed model was used to investigate the effect of sarcopenia on prognosis at 1, 3 and 6 months. Cox regression proportional risk model was used to analyze the effect of sarcopenia on readmission in patients with acute ischemic stroke.

RESULTS

The prevalence of sarcopenia was 39.83% among the 118 enrolled acute ischemic stroke patients (aged 64.98 ± 11.053 years; 72.88% males). Modified Poisson regression showed that a poor prognostic outcome occurred in sarcopenia patients (relative risk [RR] = 3.021, 95% CI: 1.621-5.633; P = 0.001). Even after adjusting for confounders, sarcopenia still was a risk predictor of the increase of mRS (RR = 2.149, 95% CI: 1.045-4.420; P = 0.038). And sarcopenia was positively correlated with BI and SSQOL with or without adjustment for confounding factors (P < 0.01). Patients with sarcopenia in mild acute ischemic stroke exhibit worse prognoses compared to those without sarcopenia. (t = 3.128, P = 0.002). Cox regression risk ratio model showed that sarcopenia was a predictor of readmission within 6 months after mild ischemic stroke (hazard ratio [HR] = 3.361, 95% CI: 1.277-8.848; P = 0.014). Sarcopenia remained an independent risk factor for mild acute ischemic stroke readmission after adjusting for confounders.

CONCLUSIONS

Sarcopenia has a high prevalence in mild acute ischemic stroke patients. Sarcopenia is an independent risk factor for poor outcomes following mild acute ischemic stroke and contributes to high rates of readmission. These findings may be useful for selecting therapeutic strategies for mild acute ischemic stroke patients with sarcopenia.

摘要

背景

缺血性中风是全球常见的慢性疾病,且与高致残率相关。肌肉减少症被认为是致残过程中的关键因素。关于急性缺血性中风患者肌肉减少症的证据有限。本研究旨在探讨肌肉减少症对急性缺血性中风患者预后的影响。

方法

进行了一项前瞻性队列研究,纳入了2020年8月至2021年5月期间被诊断为急性缺血性中风的患者。应用改良泊松回归来确定改良Rankin量表(mRS)评分变化的相对风险(RR),并对混杂因素进行调整。采用改良泊松回归确定肌肉减少症之间的关联,并使用多元线性回归分析评估肌肉减少症对Barthel指数(BI)和中风特异性生活质量(SSQOL)的影响。使用广义线性混合模型研究肌肉减少症对1、3和6个月时预后的影响。采用Cox回归比例风险模型分析肌肉减少症对急性缺血性中风患者再入院的影响。

结果

在118例纳入的急性缺血性中风患者中(年龄64.98±11.053岁;男性占72.88%),肌肉减少症的患病率为39.83%。改良泊松回归显示,肌肉减少症患者的预后较差(相对风险[RR]=3.021,95%置信区间:1.621-5.633;P=0.001)。即使在调整混杂因素后,肌肉减少症仍是mRS增加的风险预测因素(RR=2.149,95%置信区间:1.045-4.420;P=0.038)。并且无论是否调整混杂因素,肌肉减少症与BI和SSQOL均呈正相关(P<0.01)。轻度急性缺血性中风合并肌肉减少症的患者与未合并肌肉减少症的患者相比,预后更差(t=3.128,P=0.002)。Cox回归风险比模型显示,肌肉减少症是轻度缺血性中风后6个月内再入院的预测因素(风险比[HR]=3.361,95%置信区间:1.277-8.848;P=0.014)。调整混杂因素后,肌肉减少症仍是轻度急性缺血性中风再入院的独立危险因素。

结论

轻度急性缺血性中风患者中肌肉减少症的患病率较高。肌肉减少症是轻度急性缺血性中风后不良预后的独立危险因素,并导致高再入院率。这些发现可能有助于为合并肌肉减少症的轻度急性缺血性中风患者选择治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9fb/11948707/1a3d897f13a5/12883_2025_4136_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验