Son Jigyeong, Lee Hyun Jeong, Woo Han Min
Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
J Biol Eng. 2025 Mar 27;19(1):26. doi: 10.1186/s13036-025-00494-z.
Hyaluronic acid (HA) is widely used in pharmaceuticals, medicine, and cosmetics. Sustainable production has shifted to microbial fermentation using engineered GRAS strains. Diverse carbon sources and CO conversion via engineered microorganisms enhance HA production. Herein we applied advances in CRISPR technologies and tools to optimize metabolic pathway by redirecting carbon portioning in cyanobacterium Synechoccous elongatus PCC 7942, demonstrating enhanced HA production.
S. elongatus PCC 7942 lacking hyaluronan synthase (HAS) required pathway engineering for HA production. By expressing heterologous Class I HAS, a modular gene expression system was employed, incorporating hasB and hasC for the HA-GlcA module and glmU, glmM, and glmS for the GlcNAc module. This approach resulted in construction of four engineered cyanobacterial strains. Optimizing metabolic pathway involving the HA-GlcA and GlcNAc modules led to SeHA220 (wild-type with HA-GlcA and GlcNAc modules) producing 2.4 ± 0.85 mg/L HA at 21 d, a 27.5-fold increase compared to the control. Targeting F6P and G6P metabolic nodes via CRISPR interference to repress zwf and pfk genes further improved production, with SeHA226 (SeHA220 with a gene repression module) achieving 5.0 ± 0.3 mg/L HA from CO at 15 d. Notably, SeHA226 produced photosynthetic HA with a molecular weight (Mw) of 4.2 MDa, comparable to native producers, emphasizing the importance of precursor balance and growth conditions.
This study engineered cyanobacteria for efficient HA biosynthesis using modular gene expression and CRISPR-interference systems. Optimizing heterologous metabolic pathway was key to achieving high-molecular-weight photosynthetic HA production from CO. The findings provide insights into tunable HA production, with future efforts aimed at scaling up photosynthetic HA production for larger-scale applications.
透明质酸(HA)广泛应用于制药、医学和化妆品领域。可持续生产已转向使用工程化的一般认为安全(GRAS)菌株进行微生物发酵。多种碳源以及通过工程微生物进行的CO转化提高了HA的产量。在此,我们应用了CRISPR技术和工具的进展,通过重新分配蓝藻聚球藻PCC 7942中的碳分配来优化代谢途径,从而提高了HA的产量。
缺乏透明质酸合酶(HAS)的聚球藻PCC 7942需要进行途径工程来生产HA。通过表达异源I类HAS,采用了一个模块化基因表达系统,该系统包含用于HA - GlcA模块的hasB和hasC以及用于GlcNAc模块的glmU、glmM和glmS。这种方法导致构建了四种工程蓝藻菌株。对涉及HA - GlcA和GlcNAc模块的代谢途径进行优化,使得SeHA220(具有HA - GlcA和GlcNAc模块的野生型)在21天时产生2.4±0.85毫克/升的HA,与对照相比增加了27.5倍。通过CRISPR干扰靶向F6P和G6P代谢节点以抑制zwf和pfk基因进一步提高了产量,SeHA226(具有基因抑制模块的SeHA220)在15天时从CO中产生5.0±0.3毫克/升的HA。值得注意的是,SeHA226产生的光合HA的分子量(Mw)为4.2兆道尔顿,与天然生产者相当,强调了前体平衡和生长条件的重要性。
本研究利用模块化基因表达和CRISPR干扰系统对蓝藻进行工程改造以实现高效的HA生物合成。优化异源代谢途径是从CO中实现高分子量光合HA生产的关键。这些发现为可调节的HA生产提供了见解,未来的努力旨在扩大光合HA生产以用于更大规模的应用。