Suppr超能文献

基于脑电图的神经炎症诊断及其在学习障碍中的作用。

Electroencephalography-Based Neuroinflammation Diagnosis and Its Role in Learning Disabilities.

作者信息

Eroğlu Günet

机构信息

Computer Engineering Department, Engineering and Nature Faculty, Bahçeşehir University, 34349 Istanbul, Turkey.

出版信息

Diagnostics (Basel). 2025 Mar 18;15(6):764. doi: 10.3390/diagnostics15060764.

Abstract

Learning disabilities (LDs) are complex neurodevelopmental conditions influenced by genetic, epigenetic, and environmental factors. Recent research suggests that maternal autoimmune conditions, perinatal stress, and vitamin D deficiency may contribute to neuroinflammation, which, in turn, can disrupt brain development. Chronic neuroinflammation, driven by activated microglia and astrocytes, has been associated with synaptic dysfunction and cognitive impairment, potentially impacting learning and memory processes. This study aims to explore the relationship between neuroinflammation and LDs, emphasizing the role of electroencephalography (EEG) biomarkers in early diagnosis and intervention. A systematic analysis was conducted to examine the prevalence, core symptoms, and typical age of diagnosis of LDs. EEG biomarkers, particularly theta, gamma, and alpha power, were assessed as indicators of neuroinflammatory states. Additionally, artificial neural networks (ANNs) were employed to classify EEG patterns associated with LDs, evaluating their diagnostic accuracy. Findings indicate that EEG biomarkers can serve as potential indicators of neuroinflammatory patterns in children with LDs. ANNs demonstrated high classification accuracy in distinguishing EEG signatures related to LDs, highlighting their potential as a diagnostic tool. EEG-based biomarkers, combined with machine learning approaches, offer a non-invasive and precise method for detecting neuroinflammatory patterns associated with LDs. This integrative approach advances precision medicine by enabling early diagnosis and targeted interventions for neurodevelopmental disorders. Further research is required to validate these findings and establish standardized diagnostic protocols.

摘要

学习障碍(LDs)是受遗传、表观遗传和环境因素影响的复杂神经发育状况。最近的研究表明,母亲的自身免疫状况、围产期应激和维生素D缺乏可能导致神经炎症,进而扰乱大脑发育。由活化的小胶质细胞和星形胶质细胞驱动的慢性神经炎症与突触功能障碍和认知障碍有关,可能影响学习和记忆过程。本研究旨在探讨神经炎症与学习障碍之间的关系,强调脑电图(EEG)生物标志物在早期诊断和干预中的作用。进行了一项系统分析,以检查学习障碍的患病率、核心症状和典型诊断年龄。评估了脑电图生物标志物,特别是θ波、γ波和α波功率,作为神经炎症状态的指标。此外,还采用人工神经网络(ANNs)对与学习障碍相关的脑电图模式进行分类,评估其诊断准确性。研究结果表明,脑电图生物标志物可作为学习障碍儿童神经炎症模式的潜在指标。人工神经网络在区分与学习障碍相关的脑电图特征方面表现出很高的分类准确性,突出了它们作为诊断工具的潜力。基于脑电图的生物标志物与机器学习方法相结合,为检测与学习障碍相关的神经炎症模式提供了一种非侵入性且精确的方法。这种综合方法通过实现对神经发育障碍的早期诊断和靶向干预,推动了精准医学的发展。需要进一步的研究来验证这些发现并建立标准化的诊断方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4a/11941338/42b4eb033de8/diagnostics-15-00764-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验