Suppr超能文献

利用机器学习推进儿科生长评估:克服早期诊断和监测中的挑战。

Advancing Pediatric Growth Assessment with Machine Learning: Overcoming Challenges in Early Diagnosis and Monitoring.

作者信息

Rodriguez-Marin Mauro, Orozco-Alatorre Luis Gustavo

机构信息

Departament of Marketing and Analysis, Tecnologico de Monterrey Campus Guadalajara, Zapopan 45201, Mexico.

Hospital Civil de Guadalajara "Dr. Juan I. Menchaca", Universidad de Guadalajara, Guadalajara 44100, Mexico.

出版信息

Children (Basel). 2025 Feb 28;12(3):317. doi: 10.3390/children12030317.

Abstract

BACKGROUND

Pediatric growth assessment is crucial for early diagnosis and intervention in growth disorders. Traditional methods often lack accuracy and real-time decision-making capabilities This study explores the application of machine learning (ML), particularly logistic regression, to improve diagnostic precision and timeliness in pediatric growth assessment. Logistic regression is a reliable and easily interpretable model for detecting growth abnormalities in children. Unlike complex machine learning models, it offers parsimony in transparency, efficiency, and reproducibility, making it ideal for clinical settings where explainable, data-driven decisions are essential.

METHODS

A logistic regression model was developed using R to analyze biometric and demographic data from a cross-sectional dataset, including real-world data from public institucions. The study employed a bibliometric analysis to identify key trends and incorporated data preprocessing techniques such as cleaning, imputation, and feature selection to enhance model performance. Performance metrics, including accuracy, sensitivity, and the Receiver Operating Characteristic (ROC) curve, were utilized for evaluation.

RESULTS

The logistic regression model demonstrated an accuracy of 94.65% and a sensitivity of 91.03%, significantly improving the identification of growth anomalies compared to conventional assessment methods. The model's ROC curve showed an area under the curve (AUC) of 0.96, indicating excellent predictive capability. Findings highlight ML's potential in automating pediatric growth monitoring and supporting clinical decision-making, as it can be very simple and highly interpretable in clinical practice.

CONCLUSIONS

ML, particularly logistic regression, offers a promising tool for pediatric healthcare by enhancing diagnostic precision and operational efficiency. Despite these advancements, challenges remain regarding data quality, clinical integration, and privacy concerns. Future research should focus on expanding dataset diversity, improving model interpretability, and conducting external validation to facilitate broader clinical adoption.

摘要

背景

儿童生长评估对于生长障碍的早期诊断和干预至关重要。传统方法往往缺乏准确性和实时决策能力。本研究探索机器学习(ML),特别是逻辑回归的应用,以提高儿童生长评估的诊断精度和及时性。逻辑回归是一种用于检测儿童生长异常的可靠且易于解释的模型。与复杂的机器学习模型不同,它在透明度、效率和可重复性方面具有简洁性,使其非常适合需要可解释的、数据驱动决策的临床环境。

方法

使用R开发了一个逻辑回归模型,以分析来自横断面数据集的生物特征和人口统计学数据,包括来自公共机构的真实世界数据。该研究采用文献计量分析来识别关键趋势,并纳入数据预处理技术,如清理、插补和特征选择,以提高模型性能。使用包括准确性、敏感性和受试者工作特征(ROC)曲线在内的性能指标进行评估。

结果

逻辑回归模型的准确率为94.65%,敏感性为91.03%,与传统评估方法相比,显著提高了对生长异常的识别能力。该模型的ROC曲线显示曲线下面积(AUC)为0.96,表明具有出色的预测能力。研究结果突出了机器学习在自动化儿童生长监测和支持临床决策方面的潜力,因为它在临床实践中可以非常简单且高度可解释。

结论

机器学习,特别是逻辑回归,通过提高诊断精度和运营效率,为儿科医疗保健提供了一个有前景的工具。尽管取得了这些进展,但在数据质量、临床整合和隐私问题方面仍然存在挑战。未来的研究应侧重于扩大数据集的多样性、提高模型的可解释性以及进行外部验证,以促进更广泛的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e1/11941653/2065d55e4ab7/children-12-00317-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验