Nagaraj Sujay, Harish Vinyas, McCoy Liam G, Morgado Felipe, Stedman Ian, Lu Stephen, Drysdale Erik, Brudno Michael, Singh Devin
Faculty of Medicine, University of Toronto, Toronto, Ontario Canada.
Department of Computer Science, University of Toronto, Toronto, Ontario Canada.
Curr Treat Options Pediatr. 2020;6(4):336-349. doi: 10.1007/s40746-020-00205-4. Epub 2020 Sep 15.
Machine learning (ML), a branch of artificial intelligence, is influencing all fields in medicine, with an abundance of work describing its application to adult practice. ML in pediatrics is distinctly unique with clinical, technical, and ethical nuances limiting the direct translation of ML tools developed for adults to pediatric populations. To our knowledge, no work has yet focused on outlining the unique considerations that need to be taken into account when designing and implementing ML in pediatrics.
The nature of varying developmental stages and the prominence of family-centered care lead to vastly different data-generating processes in pediatrics. Data heterogeneity and a lack of high-quality pediatric databases further complicate ML research. In order to address some of these nuances, we provide a common pipeline for clinicians and computer scientists to use as a foundation for structuring ML projects, and a framework for the translation of a developed model into clinical practice in pediatrics. Throughout these pathways, we also highlight ethical and legal considerations that must be taken into account when working with pediatric populations and data.
Here, we describe a comprehensive outline of special considerations required of ML in pediatrics from project ideation to implementation. We hope this review can serve as a high-level guideline for ML scientists and clinicians alike to identify applications in the pediatric setting, generate effective ML solutions, and subsequently deliver them to patients, families, and providers.
机器学习(ML)作为人工智能的一个分支,正在影响医学的各个领域,大量工作描述了其在成人医疗实践中的应用。儿科中的机器学习具有明显的独特性,临床、技术和伦理方面的细微差别限制了为成人开发的机器学习工具直接应用于儿科人群。据我们所知,尚未有工作专注于概述在儿科设计和实施机器学习时需要考虑的独特因素。
不同发育阶段的性质以及以家庭为中心的护理的突出地位导致儿科中数据生成过程大不相同。数据异质性和缺乏高质量的儿科数据库使机器学习研究更加复杂。为了解决其中一些细微差别,我们为临床医生和计算机科学家提供了一个通用流程,作为构建机器学习项目的基础,以及一个将已开发模型转化为儿科临床实践的框架。在这些过程中,我们还强调了在处理儿科人群和数据时必须考虑的伦理和法律因素。
在此,我们描述了从项目构思到实施,儿科机器学习所需特殊考虑因素的全面概述。我们希望这篇综述能为机器学习科学家和临床医生提供一个高层次的指导方针,以确定儿科环境中的应用,生成有效的机器学习解决方案,并随后将其提供给患者、家庭和医疗服务提供者。