Suppr超能文献

从临床到计算机再回归临床:为儿科设计与实施机器学习解决方案时的实际考量

From Clinic to Computer and Back Again: Practical Considerations When Designing and Implementing Machine Learning Solutions for Pediatrics.

作者信息

Nagaraj Sujay, Harish Vinyas, McCoy Liam G, Morgado Felipe, Stedman Ian, Lu Stephen, Drysdale Erik, Brudno Michael, Singh Devin

机构信息

Faculty of Medicine, University of Toronto, Toronto, Ontario Canada.

Department of Computer Science, University of Toronto, Toronto, Ontario Canada.

出版信息

Curr Treat Options Pediatr. 2020;6(4):336-349. doi: 10.1007/s40746-020-00205-4. Epub 2020 Sep 15.

Abstract

PURPOSE OF REVIEW

Machine learning (ML), a branch of artificial intelligence, is influencing all fields in medicine, with an abundance of work describing its application to adult practice. ML in pediatrics is distinctly unique with clinical, technical, and ethical nuances limiting the direct translation of ML tools developed for adults to pediatric populations. To our knowledge, no work has yet focused on outlining the unique considerations that need to be taken into account when designing and implementing ML in pediatrics.

RECENT FINDINGS

The nature of varying developmental stages and the prominence of family-centered care lead to vastly different data-generating processes in pediatrics. Data heterogeneity and a lack of high-quality pediatric databases further complicate ML research. In order to address some of these nuances, we provide a common pipeline for clinicians and computer scientists to use as a foundation for structuring ML projects, and a framework for the translation of a developed model into clinical practice in pediatrics. Throughout these pathways, we also highlight ethical and legal considerations that must be taken into account when working with pediatric populations and data.

SUMMARY

Here, we describe a comprehensive outline of special considerations required of ML in pediatrics from project ideation to implementation. We hope this review can serve as a high-level guideline for ML scientists and clinicians alike to identify applications in the pediatric setting, generate effective ML solutions, and subsequently deliver them to patients, families, and providers.

摘要

综述目的

机器学习(ML)作为人工智能的一个分支,正在影响医学的各个领域,大量工作描述了其在成人医疗实践中的应用。儿科中的机器学习具有明显的独特性,临床、技术和伦理方面的细微差别限制了为成人开发的机器学习工具直接应用于儿科人群。据我们所知,尚未有工作专注于概述在儿科设计和实施机器学习时需要考虑的独特因素。

最新发现

不同发育阶段的性质以及以家庭为中心的护理的突出地位导致儿科中数据生成过程大不相同。数据异质性和缺乏高质量的儿科数据库使机器学习研究更加复杂。为了解决其中一些细微差别,我们为临床医生和计算机科学家提供了一个通用流程,作为构建机器学习项目的基础,以及一个将已开发模型转化为儿科临床实践的框架。在这些过程中,我们还强调了在处理儿科人群和数据时必须考虑的伦理和法律因素。

总结

在此,我们描述了从项目构思到实施,儿科机器学习所需特殊考虑因素的全面概述。我们希望这篇综述能为机器学习科学家和临床医生提供一个高层次的指导方针,以确定儿科环境中的应用,生成有效的机器学习解决方案,并随后将其提供给患者、家庭和医疗服务提供者。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
9
Artificial intelligence in pediatric allergy research.人工智能在儿科过敏研究中的应用
Eur J Pediatr. 2024 Dec 21;184(1):98. doi: 10.1007/s00431-024-05925-5.

本文引用的文献

4
How should we think about clinical data ownership?我们应该如何看待临床数据所有权?
J Med Ethics. 2020 May;46(5):289-294. doi: 10.1136/medethics-2018-105340. Epub 2020 Jan 7.
5
International evaluation of an AI system for breast cancer screening.国际乳腺癌筛查人工智能系统评估。
Nature. 2020 Jan;577(7788):89-94. doi: 10.1038/s41586-019-1799-6. Epub 2020 Jan 1.
10
Why Children's Hospitals Are Unique and So Essential.儿童医院为何独具特色且至关重要。
Front Pediatr. 2019 Jul 23;7:305. doi: 10.3389/fped.2019.00305. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验