Alwateer Majed, Bamaqa Amna, Farsi Mohamed, Aljohani Mansourah, Shehata Mohamed, Elhosseini Mostafa A
Department of Computer Science, College of Computer Science and Engineering, Taibah University, Yanbu 46421, Saudi Arabia.
Department of Computer Science and Informatics, Applied College, Taibah University, Madinah 41461, Saudi Arabia.
Bioengineering (Basel). 2025 Feb 20;12(3):212. doi: 10.3390/bioengineering12030212.
Breast cancer (BC) remains a leading cause of cancer-related mortality among women worldwide, necessitating advancements in diagnostic methodologies to improve early detection and treatment outcomes. This study proposes a novel twin-stream approach for histopathological image classification, utilizing both histopathologically inherited and vision-based features to enhance diagnostic precision. The first stream utilizes Virchow2, a deep learning model designed to extract high-level histopathological features, while the second stream employs Nomic, a vision-based transformer model, to capture spatial and contextual information. The fusion of these streams ensures a comprehensive feature representation, enabling the model to achieve state-of-the-art performance on the BACH dataset. Experimental results demonstrate the superiority of the twin-stream approach, with a mean accuracy of 98.60% and specificity of 99.07%, significantly outperforming single-stream methods and related studies. Statistical analyses, including paired -tests, ANOVA, and correlation studies, confirm the robustness and reliability of the model. The proposed approach not only improves diagnostic accuracy but also offers a scalable and efficient solution for clinical applications, addressing the challenges of resource constraints and increasing diagnostic demands.
乳腺癌(BC)仍然是全球女性癌症相关死亡的主要原因,因此需要改进诊断方法以提高早期检测和治疗效果。本研究提出了一种用于组织病理学图像分类的新型双流方法,利用组织病理学遗传特征和基于视觉的特征来提高诊断精度。第一流利用Virchow2,这是一个旨在提取高级组织病理学特征的深度学习模型,而第二流采用基于视觉的Transformer模型Nomic来捕捉空间和上下文信息。这些流的融合确保了全面的特征表示,使该模型能够在BACH数据集上实现领先的性能。实验结果证明了双流方法的优越性,平均准确率为98.60%,特异性为99.07%,显著优于单流方法和相关研究。包括配对检验、方差分析和相关性研究在内的统计分析证实了该模型的稳健性和可靠性。所提出的方法不仅提高了诊断准确性,还为临床应用提供了一种可扩展且高效的解决方案,解决了资源限制和诊断需求增加的挑战。